ﻻ يوجد ملخص باللغة العربية
In optical pumping of rubidium, a new kind of absorption occurs with a higher amplitude of radio frequency current. From measurement of the corresponding magnetic field value where this absorption occurs, there is a conclusion that it is multi-photon absorption. Both the degeneracy and energy of photons contribute to the intensity.
We present experimental and numerical studies of nonlinear magneto-optical rotation (NMOR) in rubidium vapor excited with resonant light tuned to the $5^2!S_{1/2}rightarrow 6^2!P_{1/2}$ absorption line (421~nm). Contrary to the experiments performed
Single photons are of paramount importance to future quantum technologies, including quantum communication and computation. Nonlinear photonic devices using parametric processes offer a straightforward route to generating photons, however additional
We show that two-photon absorption (TPA) in Rubidium atoms can be greatly enhanced by the use of a hollow-core photonic bandgap fiber. We investigate off-resonant, degenerate Doppler-free TPA on the 5S1/2 - 5D5/2 transition and observe 1% absorption
We investigate the optical Kerr nonlinearity and multi-photon absorption (MPA) properties of DSTMS excited by femtosecond pulses at a wavelengths of 1.43 {mu}m, which is optimal for terahertz generation via difference frequency mixing. The MPA and th
We present a theory for the diffraction of large molecules or nanoparticles at a standing light wave. Such particles can act as a genuine photon absorbers due to their numerous internal degrees of freedom effecting fast internal energy conversion. Ou