ترغب بنشر مسار تعليمي؟ اضغط هنا

Impact of short-range order on transport properties of the two-dimensional metal PdCrO$_2$

70   0   0.0 ( 0 )
 نشر من قبل Ramzy Daou
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the Hall and Nernst effects across the antiferromagnetic transition that reconstructs the quasi-2D Fermi surface of the metallic local moment antiferromagnet PdCrO$_2$. We show that non- monotonic temperature dependence in the Hall effect and a sign change in the Nernst effect above the ordering temperature cannot be understood within a simple single-band transport model. The inclusion of coherent scattering by critical antiferromagnetic fluctuations can qualitatively account for these features in the transport coefficients. We discuss the implications of this for the pseudogap phase of the cuprate superconductors, which have a similar Fermi surface and where the same transport signatures are observed.



قيم البحث

اقرأ أيضاً

As superconductors are thinned down to the 2D limit, their critical temperature $T_c$ typically decreases. Here we report the opposite behavior, a substantial enhancement of $T_c$ with decreasing thickness, in 2D crystalline superconductor 2H-TaS$_2$ . Remarkably, in the monolayer limit, $T_c$ increases to 3.4 K compared to 0.8 K in the bulk. Accompanying this trend in superconductivity, we observe suppression of the charge-density wave (CDW) transition with decreasing thickness. To explain these trends, we perform electronic structure calculations showing that a reduction of the CDW amplitude results in a substantial increase of the density of states at the Fermi energy, which contributes to the enhancement of $T_c$. Our results establish ultra-thin 2H-TaS$_2$ as an ideal platform to study the competition between CDW order and superconductivity.
130 - W. J. Zhang , S. K. He , H. Xiao 2012
Superconducting triangular Nb wire networks with high normal-state resistance are fabricated by using a negative tone hydrogen silsesquioxane (HSQ) resist. Robust magnetoresistance oscillations are observed up to high magnetic fields and maintained a t low temperatures, due to the eective reduction of wire dimensions. Well-defined dips appear at integral and rational values (1/2, 1/3, 1/4) of the reduced flux f = Phi/Phi_0, which is the first observation in the triangular wire networks. These results are well consistent with theoretical calculations for the reduced critical temperature as a function of f.
In an idealized infinite crystal, the material properties are constrained by the symmetries of its unit cell. Naturally, the point-group symmetry is broken by the sample shape of any finite crystal, yet this is commonly unobservable in macroscopic me tals. To sense the shape-induced symmetry lowering in such metals, long-lived bulk states originating from anisotropic Fermi surfaces are needed. Here we show how strongly facetted Fermi surfaces and long quasiparticle mean free paths present in microstructures of PdCoO2 yield an in-plane resistivity anisotropy that is forbidden by symmetry on an infinite hexagonal lattice. Bar shaped transport devices narrower than the mean free path are carved from single crystals using focused ion beam (FIB) milling, such that the ballistic charge carriers at low temperatures frequently collide with both sidewalls defining a channel. Two symmetry-forbidden transport signatures appear: the in-plane resistivity anisotropy exceeds a factor of 2, and transverse voltages appear in zero magnetic field. We robustly identify the channel direction as the source of symmetry breaking via ballistic Monte- Carlo simulations and numerical solution of the Boltzmann equation.
The magnetic properties of the layered oxypnictide LaMnAsO have been revisited using neutron scattering and magnetization measurements. The present measurements identify the N{e}el temperature $T_N$ = 360(1) K. Below $T_N$ the critical exponent descr ibing the magnetic order parameter is $beta$ = 0.33$-$0.35, consistent with a three dimensional Heisenberg model. Above this temperature, diffuse magnetic scattering indicative of short-range magnetic order is observed, and this scattering persists up to $T_{SRO}$ = 650(10) K. The magnetic susceptibility shows a weak anomaly at $T_{SRO}$ and no anomaly at $T_N$. Analysis of the diffuse scattering data using a reverse Monte Carlo algorithm indicates that above $T_N$ nearly two- dimensional, short-range magnetic order is present with a correlation length of 9.3(3) {AA} within the Mn layers at 400 K. The inelastic scattering data reveal a spin-gap of 3.5 meV in the long-range ordered state, and strong, low-energy (quasi-elastic) magnetic excitations emerging in the short-range ordered state. Comparison with other related compounds correlates the distortion of the Mn coordination tetrahedra to the sign of the magnetic exchange along the layer-stacking direction, and suggests that short-range order above $T_N$ is a common feature in the magnetic behavior of layered Mn-based pnictides and oxypnictides.
Multilayer graphene (MLG) thin films are deposited on silicon oxide substrates by mechanical exfoliation (or scotch-tape method) from Kish graphite. The thickness and number of layers are determined from both Atomic Force Microscopy (AFM) and Raman S pectroscopy. Electrical terminals are deposited on MLGs in a four-probe configuration by electron-beam lithography, gold/titanium thermal evaporation, and lift-off. The electrical resistance is measured from room temperature down to 2 K. The electrical resistance of the MLGs shows an increase with decreasing temperature, and then decreases after reaching a maximum value. These results are compared with recent experimental and theoretical data from the literature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا