ترغب بنشر مسار تعليمي؟ اضغط هنا

Scattering strength of potassium on a carbon nanotube with known chirality

95   0   0.0 ( 0 )
 نشر من قبل Masahiro Ishigami
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have measured the scattering strength of charged impurities on a semiconducting single-walled carbon nanotube with known chirality. The resistivity of the nanotube is measured as a function of the density of adsorbed potassium atoms, enabling the determination of the resistance added by an individual potassium atom. Holes are scattered 37 times more efficiently than electrons by an adsorbed potassium atom. The determined scattering strength is used to reveal the spatial extent and depth of the scattering potential for potassium, a model Coulomb adsorbate. Our result represents an essential experimental input to understand adsorbate-induced scattering and provides a crucial step for paving the way to rational design of nanotube-based sensors.

قيم البحث

اقرأ أيضاً

We have measured the electroluminescence and photoluminescence of (9,7) semiconducting carbon nanotube devices and demonstrate that the electroluminescence wavelength is determined by the nanotubes chiral index (n,m). The devices were fabricated on S i3N4 membranes by dielectrophoretic assembly of tubes from monochiral dispersion. Electrically driven (9,7) devices exhibit a single Lorentzian shaped emission peak at 825 nm in the visible part of the spectrum. The emission could be assigned to the excitonic E22 interband transition by comparison of the electroluminescence spectra with corresponding photoluminescence excitation maps. We show a linear dependence of the EL peak width on the electrical current, and provide evidence for the inertness of Si3N4 surfaces with respect to the nanotubes optical properties.
Chirality-selected single-walled carbon nanotubes (SWCNTs) ensure a great potential of building ~1 nm sized electronics. However, the reliable method for chirality-selected SWCNT is still pending. Here we present a theoretical study on the SWCNTs chi rality assignment and control during the catalytic growth. This study reveals that the chirality of a SWCNT is determined by the kinetic incorporation of the pentagon formation during SWCNT nucleation. Therefore, chirality is randomly assigned on a liquid catalyst surface. Furthermore, based on the understanding, two potential methods of synthesizing chirality-selected SWCNTs are proposed: i) by using Ta, W, Re, Os, or their alloys as solid catalysts, and ii) by changing the SWCNTs chirality frequently during the growth.
86 - I. Weymann , J. Barnas 2008
Electronic transport through a single-wall metallic carbon nanotube weakly coupled to one ferromagnetic and one nonmagnetic lead is analyzed in the sequential tunneling limit. It is shown that both the spin and charge currents flowing through such sy stems are highly asymmetric with respect to the bias reversal. As a consequence, nanotubes coupled to one nonmagnetic and one ferromagnetic lead can be effectively used as spin diodes whose functionality can be additionally controlled by a gate voltage.
Recently, it was suggested that the polarization dependence of light absorption to a single-walled carbon nanotube is altered by carrier doping. We specify theoretically the doping level at which the polarization anisotropy is reversed by plasmon exc itation. The plasmon energy is mainly determined by the diameter of a nanotube, because pseudospin makes the energy independent of the details of the band structure. We find that the effect of doping on the Coulomb interaction appears through the screened exchange energy, which can be observed as changes in the absorption peak positions. Our results strongly suggest the possibility that oriented nanotubes function as a polarization switch.
The use of carbon nanotubes as optical probes for scanning near-field optical microscopy requires an understanding of their near-field response. As a first step in this direction, we investigated the lateral resolution of a carbon nanotube tip with r espect to an ideal electric dipole representing an elementary detected object. A Fredholm integral equation of the first kind was formulated for the surface electric current density induced on a single-wall carbon nanotube (SWNT) by the electromagnetic field due to an arbitrarily oriented electric dipole located outside the SWNT. The response of the SWNT to the near field of a source electric dipole can be classified into two types, because surface-wave propagation occurs with (i) low damping at frequencies less than ~ 200-250 THz and (ii) high damping at higher frequencies. The interaction between the source electric dipole and the SWNT depends critically on their relative location and relative orientation, and shows evidence of the geometrical resonances of the SWNT in the low-frequency regime. These resonances disappear when the relaxation time of the SWNT is sufficiently low. The far-field radiation intensity is much higher when the source electric dipole is placed near an edge of SWNT than at the centroid of the SWNT. The use of an SWNT tip in scattering-type scanning near-field optical microscopy can deliver a resolution less than ~ 20 nm. Moreover, our study shows that the relative orientation and distance between the SWNT and the nanoscale dipole source can be detected.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا