ﻻ يوجد ملخص باللغة العربية
We have measured the scattering strength of charged impurities on a semiconducting single-walled carbon nanotube with known chirality. The resistivity of the nanotube is measured as a function of the density of adsorbed potassium atoms, enabling the determination of the resistance added by an individual potassium atom. Holes are scattered 37 times more efficiently than electrons by an adsorbed potassium atom. The determined scattering strength is used to reveal the spatial extent and depth of the scattering potential for potassium, a model Coulomb adsorbate. Our result represents an essential experimental input to understand adsorbate-induced scattering and provides a crucial step for paving the way to rational design of nanotube-based sensors.
We have measured the electroluminescence and photoluminescence of (9,7) semiconducting carbon nanotube devices and demonstrate that the electroluminescence wavelength is determined by the nanotubes chiral index (n,m). The devices were fabricated on S
Chirality-selected single-walled carbon nanotubes (SWCNTs) ensure a great potential of building ~1 nm sized electronics. However, the reliable method for chirality-selected SWCNT is still pending. Here we present a theoretical study on the SWCNTs chi
Electronic transport through a single-wall metallic carbon nanotube weakly coupled to one ferromagnetic and one nonmagnetic lead is analyzed in the sequential tunneling limit. It is shown that both the spin and charge currents flowing through such sy
Recently, it was suggested that the polarization dependence of light absorption to a single-walled carbon nanotube is altered by carrier doping. We specify theoretically the doping level at which the polarization anisotropy is reversed by plasmon exc
The use of carbon nanotubes as optical probes for scanning near-field optical microscopy requires an understanding of their near-field response. As a first step in this direction, we investigated the lateral resolution of a carbon nanotube tip with r