ﻻ يوجد ملخص باللغة العربية
Chirality-selected single-walled carbon nanotubes (SWCNTs) ensure a great potential of building ~1 nm sized electronics. However, the reliable method for chirality-selected SWCNT is still pending. Here we present a theoretical study on the SWCNTs chirality assignment and control during the catalytic growth. This study reveals that the chirality of a SWCNT is determined by the kinetic incorporation of the pentagon formation during SWCNT nucleation. Therefore, chirality is randomly assigned on a liquid catalyst surface. Furthermore, based on the understanding, two potential methods of synthesizing chirality-selected SWCNTs are proposed: i) by using Ta, W, Re, Os, or their alloys as solid catalysts, and ii) by changing the SWCNTs chirality frequently during the growth.
The effect of a N2 impurity on the radial thermal expansion coefficient (ar) of single-walled carbon nanotube bundles has been investigated in the temperature interval 2.2 - 43 K by the dilatometric method. Saturation of nanotube bundles with N2 caus
Ultrafast terahertz spectroscopy accesses the {em dark} excitonic ground state in resonantly-excited (6,5) SWNTs via internal, direct dipole-allowed transitions between lowest lying dark-bright pair state $sim$6 meV. An analytical model reproduces th
Using the first principles calculations we have studied the vibrational modes and Raman spectra of a (10, 10) single-walled carbon nanotube (SWNT) bundle under hydrostatic pressure. Detailed analysis shows that the original radial breathing mode (RBM
The effect of a normal H2 impurity upon the radial thermal expansion (Ar) of SWNT bundles has been investigated in the interval T = 2.2-27 K using the dilatometric method. It is found that H2 saturation of SWNT bundles causes a shift of the temperatu
Wavelength-dependent pump-probe spectroscopy of micelle-suspended single-walled carbon nanotubes reveals two-component dynamics. The slow component (5-20 ps), which has not been observed previously, is resonantly enhanced whenever the pump photon ene