ﻻ يوجد ملخص باللغة العربية
We employ new calculational technique and present complete list of classical $r$-matrices for $D=4$ complex homogeneous orthogonal Lie algebra $mathfrak{o}(4;mathbb{C})$, the rotational symmetry of four-dimensional complex space-time. Further applying reality conditions we obtain the classical $r$-matrices for all possible real forms of $mathfrak{o}(4;mathbb{C})$: Euclidean $mathfrak{o}(4)$, Lorentz $mathfrak{o}(3,1)$, Kleinian $mathfrak{o}(2,2)$ and quaternionic $mathfrak{o}^{star}(4)$ Lie algebras. For $mathfrak{o}(3,1)$ we get known four classical $D=4$ Lorentz $r$-matrices, but for other real Lie algebras (Euclidean, Kleinian, quaternionic) we provide new results and mention some applications.
In our previous paper we obtained a full classification of nonequivalent quasitriangular quantum deformations for the complex $D=4$ Euclidean Lie symmetry $mathfrak{o}(4;mathbb{C})$. The result was presented in the form of a list consisting of three
We construct firstly the complete list of five quantum deformations of $D=4$ complex homogeneous orthogonal Lie algebra $mathfrak{o}(4;mathbb{C})cong mathfrak{o}(3;mathbb{C})oplus mathfrak{o}(3;mathbb{C})$, describing quantum rotational symmetry of f
We present the class of deformations of simple Euclidean superalgebra, which describe the supersymmetrization of some Lie algebraic noncommutativity of D=4 Euclidean space-time. The presented deformations are generated by the supertwists. We provide
This paper together with the previous one (arXiv:hep-th/0604146) presents the detailed description of all quantum deformations of D=4 Lorentz algebra as Hopf algebra in terms of complex and real generators. We describe here in detail two quantum defo
We show how some classical r-matrices for the D=4 Poincare algebra can be supersymmetrized by an addition of part depending on odd supercharges. These r-matrices for D=4 super-Poincare algebra can be presented as a sum of the so-called subordinated r