ﻻ يوجد ملخص باللغة العربية
We present first results from a LOFAR census of non-recycled pulsars. The census includes almost all such pulsars known (194 sources) at declinations ${rm Dec}> 8^circ$ and Galactic latitudes $|{rm Gb}| > 3^circ$, regardless of their expected flux densities and scattering times. Each pulsar was observed for $geq 20$ minutes in the contiguous frequency range of 110--188 MHz. Full-Stokes data were recorded. We present the dispersion measures, flux densities, and calibrated total intensity profiles for the 158 pulsars detected in the sample. The median uncertainty in census dispersion measures ($1.5 times 10^{-3}$ pc cm$^{-3}$) is ten times smaller, on average, than in the ATNF pulsar catalogue. We combined census flux densities with those in the literature and fitted the resulting broadband spectra with single or broken power-law functions. For 48 census pulsars such fits are being published for the first time. Typically, the choice between single and broken power-laws, as well as the location of the spectral break, were highly influenced by the spectral coverage of the available flux density measurements. In particular, the inclusion of measurements below 100 MHz appears essential for investigating the low-frequency turnover in the spectra for most of the census pulsars. For several pulsars, we compared the spectral indices from different works and found the typical spread of values to be within 0.5--1.5, suggesting a prevailing underestimation of spectral index errors in the literature. The census observations yielded some unexpected individual source results, as we describe in the paper. Lastly, we will provide this unique sample of wide-band, low-frequency pulse profiles via the European Pulsar Network Database.
We present the results from the low-frequency (40--78 MHz) extension of the first LOFAR pulsar census of non-recycled pulsars. We have used the Low-Band Antennas of the LOFAR core stations to observe 87 pulsars out of 158 that have been detected prev
We report the detection of 48 millisecond pulsars (MSPs) out of 75 observed thus far using the LOFAR in the frequency range 110-188 MHz. We have also detected three MSPs out of nine observed in the frequency range 38-77 MHz. This is the largest sampl
We have conducted two pilot surveys for radio pulsars and fast transients with the Low-Frequency Array (LOFAR) around 140 MHz and here report on the first low-frequency fast-radio burst limit and the discovery of two new pulsars. The first survey, th
LOFAR offers the unique capability of observing pulsars across the 10-240 MHz frequency range with a fractional bandwidth of roughly 50%. This spectral range is well-suited for studying the frequency evolution of pulse profile morphology caused by bo
Radio pulses from pulsars are affected by plasma dispersion, which results in a frequency-dependent propagation delay. Variations in the magnitude of this effect lead to an additional source of red noise in pulsar timing experiments, including pulsar