ترغب بنشر مسار تعليمي؟ اضغط هنا

A LOFAR census of millisecond pulsars

122   0   0.0 ( 0 )
 نشر من قبل Vladislav Kondratiev
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the detection of 48 millisecond pulsars (MSPs) out of 75 observed thus far using the LOFAR in the frequency range 110-188 MHz. We have also detected three MSPs out of nine observed in the frequency range 38-77 MHz. This is the largest sample of MSPs ever observed at these low frequencies, and half of the detected MSPs were observed for the first time at frequencies below 200 MHz. We present the average pulse profiles of the detected MSPs, their effective pulse widths, and flux densities and compare these with higher observing frequencies. The flux-calibrated, multifrequency LOFAR pulse profiles are publicly available via the EPN Database of Pulsar Profiles. We also present average values of dispersion measures (DM) and discuss DM and profile variations. About 35% of the MSPs show strong narrow profiles, another 25% exhibit scattered profiles, and the rest are only weakly detected. A qualitative comparison of LOFAR profiles with those at higher radio frequencies shows constant separation between profile components. Similarly, the profile widths are consistent with those observed at higher frequencies, unless scattering dominates at the lowest frequencies. This is very different from what is observed for normal pulsars and suggests a compact emission region in the MSP magnetosphere. The amplitude ratio of the profile components, on the other hand, can dramatically change towards low frequencies, often with the trailing component becoming dominant. As previously demonstrated this can be caused by aberration and retardation. This data set enables high-precision studies of pulse profile evolution with frequency, dispersion, Faraday rotation, and scattering in the interstellar medium. Characterising and correcting these systematic effects may improve pulsar-timing precision at higher observing frequencies, where pulsar timing array projects aim to directly detect gravitational waves.


قيم البحث

اقرأ أيضاً

We present the results from the low-frequency (40--78 MHz) extension of the first LOFAR pulsar census of non-recycled pulsars. We have used the Low-Band Antennas of the LOFAR core stations to observe 87 pulsars out of 158 that have been detected prev iously with the High-Band Antennas. Forty-three pulsars have been detected and we present here their flux densities and flux-calibrated profiles. Seventeen of these pulsars have not been, to our knowledge, detected before at such low frequencies. We re-calculate the spectral indices using the new low-frequency flux density measurements from the LOFAR census and discuss the prospects of studying pulsars at the very low frequencies with the current and upcoming facilities, such as NenuFAR.
122 - Jongsu Lee 2018
We have conducted a systematic survey for the X-ray properties of millisecond pulsars (MSPs). Currently, there are 47 MSPs with confirmed X-ray detections. We have also placed the upper limits for the X-ray emission from the other 36 MSPs by using th e archival data. We have normalized their X-ray luminosities $L_{x}$ and their effective photon indices $Gamma$ into a homogeneous data set, which enable us to carry out a detailed statistical analysis. Based on our censored sample, we report a relation of $L_{x}simeq10^{31.05}left(dot{E}/10^{35}right)^{1.31}$ erg/s (2-10 keV) for the MSPs. The inferred X-ray conversion efficiency is found to be lower than previously reported estimate that could be affected by selection bias. $L_{x}$ also correlates/anti-correlates with the magnetic field strength at the light cylinder $B_{LC}$/characteristic age $tau$. On the other hand, there is no correlation between $L_{x}$ and their surface magnetic field strength $B_{s}$. We have further divided the sample into four classes: (i) black-widows, (ii) redbacks, (iii) isolated MSPs and (iv) other MSP binaries, and compare the properties among them. We noted that while the rotational parameters and the orbital periods of redbacks and black-widow are similar, $L_{x}$ of redbacks are significantly higher than those of black-widows in the 2-10 keV band. Also the $Gamma$ of redbacks are apparently smaller than those of black-widows, which indicates the X-ray emission of redbacks are harder than that of black-widows. This can be explained by the different contribution of intrabinary shocks in the X-ray emission of these two classes.
Radio pulses from pulsars are affected by plasma dispersion, which results in a frequency-dependent propagation delay. Variations in the magnitude of this effect lead to an additional source of red noise in pulsar timing experiments, including pulsar timing arrays that aim to detect nanohertz gravitational waves. We aim to quantify the time-variable dispersion with much improved precision and characterise the spectrum of these variations. We use the pulsar timing technique to obtain highly precise dispersion measure (DM) time series. Our dataset consists of observations of 36 millisecond pulsars, which were observed for up to 7.1 years with the LOFAR telescope at a centre frequency of ~150 MHz. Seventeen of these sources were observed with a weekly cadence, while the rest were observed at monthly cadence. We achieve a median DM precision of the order of 10^-5 cm^-3 pc for a significant fraction of our sources. We detect significant variations of the DM in all pulsars with a median DM uncertainty of less than 2x10^-4 cm^-3 pc. The noise contribution to pulsar timing experiments at higher frequencies is calculated to be at a level of 0.1-10 us at 1.4 GHz over a timespan of a few years, which is in many cases larger than the typical timing precision of 1 us or better that PTAs aim for. We found no evidence for a dependence of DM on radio frequency for any of the sources in our sample. The DM time series we obtained using LOFAR could in principle be used to correct higher-frequency data for the variations of the dispersive delay. However, there is currently the practical restriction that pulsars tend to provide either highly precise times of arrival (ToAs) at 1.4 GHz or a high DM precision at low frequencies, but not both, due to spectral properties. Combining the higher-frequency ToAs with those from LOFAR to measure the infinite-frequency ToA and DM would improve the result.
158 - V. Testa 2015
Milli-second pulsars (MSPs) are rapidly spinning neutron stars, with spin periods P_s <= 10 ms, which have been most likely spun up after a phase of matter accretion from a companion star. In this work we present the results of the search for the com panion stars of four binary milli-second pulsars, carried out with archival data from the Gemini South telescope. Based upon a very good positional coincidence with the pulsar radio coordinates, we likely identified the companion stars to three MSPs, namely PSRJ0614-3329 (g=21.95 +- 0.05), J1231-1411 (g=25.40 +-0.23), and J2017+0603 (g=24.72 +- 0.28). For the last pulsar (PSRJ0613-0200) the identification was hampered by the presence of a bright star (g=16 +- 0.03) at sim 2 from the pulsar radio coordinates and we could only set 3-sigma upper limits of g=25.0, r= 24.3, and i= 24.2 on the magnitudes of its companion star. The candidate companion stars to PSRJ0614-3329, J1231-1411, and J2017+0603 can be tentatively identified as He white dwarfs (WDs) on the basis of their optical colours and brightness and the comparison with stellar model tracks. From the comparison of our multi-band photometry with stellar model tracks we also obtained possible ranges on the mass, temperature, and gravity of the candidate WD companions to these three MSPs. Optical spectroscopy observations are needed to confirm their possible classification as He WDs and accurately measure their stellar parameters.
We report the discovery and timing results for five millisecond pulsars (MSPs) from the Arecibo PALFA survey: PSRs J1906+0055, J1914+0659, J1933+1726, J1938+2516, and J1957+2516. Timing observations of the 5 pulsars were conducted with the Arecibo an d Lovell telescopes for time spans ranging from 1.5 to 3.3 yr. All of the MSPs except one (PSR J1914+0659) are in binary systems with low eccentricities. PSR J1957+2516 is likely a redback pulsar, with a ~0.1 $M_odot$ companion and possible eclipses that last ~10% of the orbit. The position of PSR J1957+2516 is also coincident with a NIR source. All 5 MSPs are distant (>3.1 kpc) as determined from their dispersion measures, and none of them show evidence of $gamma$-ray pulsations in a search of Fermi Gamma-Ray Space Telescope data. These 5 MSPs bring the total number of MSPs discovered by the PALFA survey to 26 and further demonstrate the power of this survey in finding distant, highly dispersed MSPs deep in the Galactic plane.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا