ﻻ يوجد ملخص باللغة العربية
We investigate minimizers defined on a bounded domain in $mathbb{R}^2$ for the Maier--Saupe Q--tensor energy used to characterize nematic liquid crystal configurations. The energy density is singular, as in Ball and Mujamdars modification of the Ginzburg--Landau Q--tensor model, so as to constrain the competing states to have eigenvalues in the closure of a physically realistic range. We prove that minimizers are regular and in several model problems we are able to use this regularity to prove that minimizers have eigenvalues strictly within the physical range.
The repulsion strength at the origin for repulsive/attractive potentials determines the regularity of local minimizers of the interaction energy. In this paper, we show that if this repulsion is like Newtonian or more singular than Newtonian (but sti
We establish sufficient conditions for a function on the torus to be equal to its Steiner symmetrization and apply the result to volume-constrained minimizers of the Cahn-Hilliard energy. We also show how two-point rearrangements can be used to estab
We consider a full Navier-Stokes and $Q$-tensor system for incompressible liquid crystal flows of nematic type. In the two dimensional periodic case, we prove the existence and uniqueness of global strong solutions that are uniformly bounded in time.
In this article, we consider and analyse a small variant of a functional originally introduced in cite{BLS,LS} to approximate the (geometric) planar Steiner problem. This functional depends on a small parameter $varepsilon>0$ and resembles the (scala
We study the regularity of minimizers of the functional $mathcal E(u):= [u]_{H^s(Omega)}^2 +int_Omega fu$. This corresponds to understanding solutions for the regional fractional Laplacian in $Omegasubsetmathbb R^N$. More precisely, we are interested