ﻻ يوجد ملخص باللغة العربية
The general characteristics based off-lattice Boltzmann scheme (BKG) proposed by Bardow et~al.(2006), and the discrete unified gas kinetic scheme (DUGKS) are two methods that successfully overcome the time step restriction by the collision time, which is commonly seen in many other kinetic schemes. Basically, the BKG scheme is a time splitting scheme, while the DUGKS is an un-split finite volume scheme. In this work, we first perform a theoretical analysis of the two schemes in the finite volume framework by comparing their numerical flux evaluations. It is found that the effects of collision term are considered in the reconstructions of the cell-interface distribution function in both schemes, which explains why they can overcome the time step restriction and can give accurate results even as the time step is much larger than the collision time. The difference between the two schemes lies in the treatment of the integral of the collision term, in which the Bardows scheme uses the rectangular rule while the DUGKS uses the trapezoidal rule. The performance of the two schemes, i.e., accuracy, stability, and efficiency are then compared by simulating several two dimensional flows, including the unsteady Taylor-Green vortex flow, the steady lid-driven cavity flow, and the laminar boundary layer problem. It is observed that, the DUGKS can give more accurate results than the BKG scheme. Furthermore, the numerical stability of the BKG scheme decreases as the Courant-Friedrichs-Lewy (CFL) number approaches to 1, while the stability of DUGKS is not affected by the CFL number apparently as long as CFL<1. It is also observed that the BKG scheme is about one time faster than the DUGKS scheme with the same computational mesh and time step.
Discrete Boltzmann model (DBM) is a type of coarse-grained mesoscale kinetic model derived from the Boltzmann equation. Physically, it is roughly equivalent to a hydrodynamic model supplemented by a coarse-grained model for the relevant thermodynamic
A lattice Boltzmann model is considered in which the speed of sound can be varied independently of the other parameters. The range over which the speed of sound can be varied is investigated and good agreement is found between simulations and theory.
We present numerical simulations of three-dimensional thermal convective flows in a cubic cell at high Rayleigh number using thermal lattice Boltzmann (LB) method. The thermal LB model is based on double distribution function approach, which consists
Simulating inhomogeneous flows with different characteristic scales in different coordinate directions using the collide-and-stream based lattice Boltzmann methods (LBM) can be accomplished efficiently using rectangular lattice grids. We develop and
A two-fluid Discrete Boltzmann Model(DBM) for compressible flows based on Ellipsoidal Statistical Bhatnagar-Gross-Krook(ES-BGK) is presented. The model has flexible Prandtl number or specific heat ratio. Mathematically, the model is composed of two c