ﻻ يوجد ملخص باللغة العربية
The circular polarization of direct gap emission of Ge is studied in optically-excited tensile-strained Ge-on-Si heterostructures as a function of doping and temperature. Owing to the spin-dependent optical selection rules, the radiative recombinations involving strain-split light (cG-LH) and heavy hole (cG-HH) bands are unambiguously resolved. The fundamental cG-LH transition is found to have a low temperature circular polarization degree of about 85% despite an off-resonance excitation of more than 300 meV. By photoluminescence (PL) measurements and tight binding calculations we show that this exceptionally high value is due to the peculiar energy dependence of the optically-induced electron spin population. Finally, our observation of the direct gap doublet clarifies that the light hole contribution, previously considered to be negligible, can dominate the room temperature PL even at low tensile strain values of about 0.2%.
The strain tuned magnetism of YTiO$_3$ film grown on the LaAlO$_3$ ($110$) substrate is studied by the method of the first principles, and compared with that of the ($001$)-oriented one. The obtained magnetism is totally different, which is ferromagn
We address nonradiative recombination pathways by leveraging surface passivation and dislocation management in micron-scale arrays of Ge crystals grown on deeply patterned Si substrates. The time decay photoluminescence (PL) at cryogenic temperatures
The enigma of the emergent ferromagnetic state in tensile-strained LaCoO3 thin films remains to be explored because of the lack of a well agreed explanation. The direct magnetic imaging technique using a low-temperature magnetic force microscope (MFM
Strong Rashba effects at surfaces and interfaces have attracted great attention for basic scientific exploration and practical applications. Here, the first-principles investigation shows that giant and tunable Rashba effects can be achieved in KTaO$
Transport and magnetic properties of LSMO manganite thin films and bicrystal junctions were investigated. Manganite films were epitaxially grown on STO, LAO, NGO and LSAT substrates and their magnetic anisotropy were determined by two techniques of m