ﻻ يوجد ملخص باللغة العربية
Structure-from-motion (SfM) largely relies on feature tracking. In image sequences, if disjointed tracks caused by objects moving in and out of the field of view, occasional occlusion, or image noise, are not handled well, corresponding SfM could be affected. This problem becomes severer for large-scale scenes, which typically requires to capture multiple sequences to cover the whole scene. In this paper, we propose an efficient non-consecutive feature tracking (ENFT) framework to match interrupted tracks distributed in different subsequences or even in different videos. Our framework consists of steps of solving the feature `dropout problem when indistinctive structures, noise or large image distortion exists, and of rapidly recognizing and joining common features located in different subsequences. In addition, we contribute an effective segment-based coarse-to-fine SfM algorithm for robustly handling large datasets. Experimental results on challenging video data demonstrate the effectiveness of the proposed system.
We present a novel fruit counting pipeline that combines deep segmentation, frame to frame tracking, and 3D localization to accurately count visible fruits across a sequence of images. Our pipeline works on image streams from a monocular camera, both
Current non-rigid structure from motion (NRSfM) algorithms are mainly limited with respect to: (i) the number of images, and (ii) the type of shape variability they can handle. This has hampered the practical utility of NRSfM for many applications wi
Jointly exploiting multiple different yet complementary domain information has been proven to be an effective way to perform robust object tracking. This paper focuses on effectively representing and utilizing complementary features from the frame do
We present GraphMatch, an approximate yet efficient method for building the matching graph for large-scale structure-from-motion (SfM) pipelines. Unlike modern SfM pipelines that use vocabulary (Voc.) trees to quickly build the matching graph and avo
Fast appearance variations and the distractions of similar objects are two of the most challenging problems in visual object tracking. Unlike many existing trackers that focus on modeling only the target, in this work, we consider the emph{transient