ترغب بنشر مسار تعليمي؟ اضغط هنا

Ferromagnetic clouds caused by hole motion in a one-dimensional $t$-$J$ mode

46   0   0.0 ( 0 )
 نشر من قبل Kazuhiro Sano
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The one-dimensional $t_1$-$t_2$-$J_1$-$J_2$ model is examined in the one-hole case, in which the total number of electrons is one less than the number of the lattice sites. The ground-state phase diagram includes a series of partial ferromagnetic phases, which are stacked in a regime of positive and small $J_1$. We find that the ground state in each of these partial ferromagnetic phases includes a ferromagnetic cloud, which is a multiple-spin bound state together with the hole. The ferromagnetic cloud is a large magnetic polaron with a heavy mass in a single-band electronic system and is supposedly formed as a result of Nagaoka ferromagnetism which locally works around the hole.

قيم البحث

اقرأ أيضاً

99 - C. Hubig , A. Bohrdt , M. Knap 2019
Infinite projected entangled pair states (iPEPS) provide a convenient variational description of infinite, translationally-invariant two-dimensional quantum states. However, the simulation of local excitations is not directly possible due to the tran slationally-invariant ansatz. Furthermore, as iPEPS are either identical or orthogonal, expectation values between different states as required during the evaluation of non-equal-time correlators are ill-defined. Here, we show that by introducing auxiliary states on each site, it becomes possible to simulate both local excitations and evaluate non-equal-time correlators in an iPEPS setting under real-time evolution. We showcase the method by simulating the t-J model after a single hole has been placed in the half-filled antiferromagnetic background and evaluating both return probabilities and spin correlation functions, as accessible in quantum gas microscopes.
72 - O. P. Sushkov , J. Oitmaa 2009
We revisit the problem of a single hole moving in the background of the two dimensional Heisenberg antiferromagnet. The hole is loosely bound by an impurity potential. We show that the bound state is generically a parity doublet: there are parametric ally close bound states of opposite parity. Due to the degeneracy the bound state readily breaks local symmetries of the square lattice and this leads to formation of the long range spiral distortion of the antiferromagnetic background. A direct analogy with van der Waals forces in atomic physics is discussed.
The $t$-$J$ model is a standard model of strongly correlated electrons, often studied in the context of high-$T_c$ superconductivity. However, most studies of this model neglect three-site terms, which appear at the same order as the superexchange $J $. As these terms correspond to pair-hopping, they are expected to play an important role in the physics of superconductivity when doped sufficiently far from half-filling. In this paper we present a density matrix renormalisation group study of the one-dimensional $t$-$J$ model with the pair hopping terms included. We demonstrate that that these additional terms radically change the one-dimensional ground state phase diagram, extending the superconducting region at low fillings, while at larger fillings, superconductivity is completely suppressed. We explain this effect by introducing a simplified effective model of repulsive hardcore bosons.
A continuum of excitations in interacting one-dimensional systems is bounded from below by a spectral edge that marks the lowest possible excitation energy for a given momentum. We analyse short-range interactions between Fermi particles and between Bose particles (with and without spin) using Bethe-Ansatz techniques and find that the dispersions of the corresponding spectral edge modes are close to a parabola in all cases. Based on this emergent phenomenon we propose an empirical model of a free, non-relativistic particle with an effective mass identified at low energies as the bare electron mass renormalised by the dimensionless Luttinger parameter $K$ (or $K_sigma$ for particles with spin). The relevance of the Luttinger parameters beyond the low energy limit provides a more robust method for extracting them experimentally using a much wide range of data from the bottom of the one-dimensional band to the Fermi energy. The empirical model of the spectral edge mode complements the mobile impurity model to give a description of the excitations in proximity of the edge at arbitrary momenta in terms of only the low energy parameters and the bare electron mass. Within such a framework, for example, exponents of the spectral function are expressed explicitly in terms of only a few Luttinger parameters.
In this paper, we have systematically studied the single hole problem in two-leg Hubbard and $t$-$J$ ladders by large-scale density-matrix renormalization group calculations. We found that the doped hole in both models behaves similarly with each oth er while the three-site correlated hopping term is not important in determining the ground state properties. For more insights, we have also calculated the elementary excitations, i.e., the energy gaps to the excited states of the system. In the strong rung limit, we found that the doped hole behaves as a Bloch quasiparticle in both systems where the spin and charge of the doped hole are tightly bound together. In the isotropic limit, while the hole still behaves like a quasiparticle in the long-wavelength limit, its spin and charge components are only loosely bound together with a nontrivial mutual statistics inside the quasiparticle. Our results show that this mutual statistics can lead to an important residual effect which dramatically changes the local structure of the ground state wavefunction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا