ترغب بنشر مسار تعليمي؟ اضغط هنا

Ground state phase diagram of the one-dimensional $t$-$J$ model with pair hopping terms

85   0   0.0 ( 0 )
 نشر من قبل Jonathan Coulthard
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The $t$-$J$ model is a standard model of strongly correlated electrons, often studied in the context of high-$T_c$ superconductivity. However, most studies of this model neglect three-site terms, which appear at the same order as the superexchange $J$. As these terms correspond to pair-hopping, they are expected to play an important role in the physics of superconductivity when doped sufficiently far from half-filling. In this paper we present a density matrix renormalisation group study of the one-dimensional $t$-$J$ model with the pair hopping terms included. We demonstrate that that these additional terms radically change the one-dimensional ground state phase diagram, extending the superconducting region at low fillings, while at larger fillings, superconductivity is completely suppressed. We explain this effect by introducing a simplified effective model of repulsive hardcore bosons.



قيم البحث

اقرأ أيضاً

We compute the phase diagram of a one-dimensional model of spinless fermions with pair-hopping and nearest-neighbor interaction, first introduced by Ruhman and Altman, using the density-matrix renormalization group combined with various analytical ap proaches. Although the main phases are a Luttinger liquid of fermions and a Luttinger liquid of pairs, we also find remarkable phases in which only a fraction of the fermions are paired. In such case, two situations arise: either fermions and pairs coexist spatially in a two-fluid mixture, or they are spatially segregated leading to phase separation. These results are supported by several analytical models that describe in an accurate way various relevant cuts of the phase diagram. Last, we identify relevant microscopic observables that capture the presence of these two fluids: while originally introduced in a phenomenological way, they support a wider application of two-fluid models for describing pairing phenomena.
577 - S. Nishimoto , K. Sano , 2007
We study the one-dimensional Hubbard model with nearest-neighbor and next-nearest-neighbor hopping integrals by using the density-matrix renormalization group (DMRG) method and Hartree-Fock approximation. Based on the calculated results for the spin gap, total-spin quantum number, and Tomonaga-Luttinger-liquid parameter, we determine the ground-state phase diagram of the model in the entire filling and wide parameter region. We show that, in contrast to the weak-coupling regime where a spin-gapped liquid phase is predicted in the region with four Fermi points, the spin gap vanishes in a substantial region in the strong-coupling regime. It is remarkable that a large variety of phases, such as the paramagnetic metallic phase, spin-gapped liquid phase, singlet and triplet superconducting phases, and fully polarized ferromagnetic phase, appear in such a simple model in the strong-coupling regime.
We study the three-dimensional bosonic t-J model, i.e., the t-J model of bosonic electrons, at finite temperatures. This model describes the $s={1 over 2}$ Heisenberg spin model with the anisotropic exchange coupling $J_{bot}=-alpha J_z$ and doped {i t bosonic} holes, which is an effective system of the Bose-Hubbard model with strong repulsions. The bosonic electron operator $B_{rsigma}$ at the site $r$ with a two-component (pseudo-)spin $sigma (=1,2)$ is treated as a hard-core boson operator, and represented by a composite of two slave particles; a spinon described by a Schwinger boson (CP$^1$ boson) $z_{rsigma}$ and a holon described by a hard-core-boson field $phi_r$ as $B_{rsigma}=phi^dag_r z_{rsigma}$. By means of Monte Carlo simulations, we study its finite-temperature phase structure including the $alpha$ dependence, the possible phenomena like appearance of checkerboard long-range order, super-counterflow, superfluid, and phase separation, etc. The obtained results may be taken as predictions about experiments of two-component cold bosonic atoms in the cubic optical lattice.
We compute the ground state phase diagram of the 2d Bose-Hubbard model with anisotropic hopping using quantum Monte Carlo simulations, connecting the 1d to the 2d system. We find that the tip of the lobe lies on a curve controlled by the 1d limit ove r the full anisotropy range while the universality class is always the same as in the isotropic 2d system. This behavior can be derived analytically from the lowest RG equations and has a form typical for the underlying Kosterlitz-Thouless transition in 1d. We also compute the phase boundary of the Mott lobe for strong anisotropy and compare it to the 1d system. Our calculations shed light on recent cold gas experiments monitoring the dynamics of an expanding cloud.
145 - X. Deng , S. Ray , S. Sinha 2018
One-dimensional quasi-periodic systems with power-law hopping, $1/r^a$, differ from both the standard Aubry-Azbel-Harper (AAH) model and from power-law systems with uncorrelated disorder. Whereas in the AAH model all single-particle states undergo a transition from ergodic to localized at a critical quasi-disorder strength, short-range power-law hops with $a>1$ can result in mobility edges. Interestingly, there is no localization for long-range hops with $aleq 1$, in contrast to the case of uncorrelated disorder. Systems with long-range hops are rather characterized by ergodic-to-multifractal edges and a phase transition from ergodic to multifractal (extended but non ergodic) states. We show that both mobility and ergodic-to-multifractal edges may be clearly revealed in experiments on expansion dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا