ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous longitudinal relaxation of nuclear spins in CaF$_2$

179   0   0.0 ( 0 )
 نشر من قبل Chahan Kropf
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the effect of non-secular resonances for interacting nuclear spins in solids which were predicted theoretically to exist in the presence of strong static and strong radio-frequency magnetic fields. These resonances imply corrections to the standard secular approximation for the nuclear spin-spin interaction in solids, which, in turn, should lead to an anomalous longitudinal relaxation in nuclear magnetic resonance experiments. In this article, we investigate the feasibility of the experimental observation of this anomalous longitudinal relaxation in calcium fluoride (CaF$_2$) and conclude that such an observation is realistic.



قيم البحث

اقرأ أيضاً

We investigate the limits of effectiveness of classical spin simulations for predicting free induction decays (FIDs) measured by solid-state nuclear magnetic resonance (NMR) on systems of quantum nuclear spins. The specific limits considered are asso ciated with the range of interaction, the size of individual quantum spins and the long-time behavior of the FID signals. We compare FIDs measured or computed for lattices of quantum spins (mainly spins 1/2) with the FIDs computed for the corresponding lattices of classical spins. Several cases of excellent quantitative agreement between quantum and classical FIDs are reported along with the cases of gradually decreasing quality of the agreement. We formulate semi-empirical criteria defining the situations, when classical simulations are expected to accurately reproduce quantum FIDs. Our findings indicate that classical simulations may be a quantitatively accurate tool of first principles calculations for a broad class of macroscopic systems, where individual quantum microscopic degrees of freedom are far from the classical limit.
We demonstrate that efficient optical pumping of nuclear spins in semiconductor quantum dots (QDs) can be achieved by resonant pumping of optically forbidden transitions. This process corresponds to one-to-one conversion of a photon absorbed by the d ot into a polarized nuclear spin, which also has potential for initialization of hole spin in QDs. Pumping via the forbidden transition is a manifestation of the optical solid effect, an optical analogue of the effect previously observed in electron spin resonance experiments in the solid state. We find that by employing this effect, nuclear polarization of 65% can be achieved, the highest reported so far in optical orientation studies in QDs. The efficiency of the spin pumping exceeds that employing the allowed transition, which saturates due to the low probability of electron-nuclear spin flip-flop.
The aggregation of superparamagnetic iron oxide (SPIO) nanoparticles decreases the transverse nuclear magnetic resonance (NMR) relaxation time T2 of adjacent water molecules measured by a Carr-Purcell-Meiboom-Gill (CPMG) pulse-echo sequence. This eff ect is commonly used to measure the concentrations of a variety of small molecules. We perform extensive Monte Carlo simulations of water diffusing around SPIO nanoparticle aggregates to determine the relationship between T2 and details of the aggregate. We find that in the motional averaging regime T2 scales as a power law with the number N of nanoparticles in an aggregate. The specific scaling is dependent on the fractal dimension d of the aggregates. We find T2 N^{-0.44} for aggregates with d=2.2, a value typical of diffusion limited aggregation. We also find that in two-nanoparticle systems, T2 is strongly dependent on the orientation of the two nanoparticles relative to the external magnetic field, which implies that it may be possible to sense the orientation of a two-nanoparticle aggregate. To optimize the sensitivity of SPIO nanoparticle sensors, we propose that it is best to have aggregates with few nanoparticles, close together, measured with long pulse-echo times.
We study the lifetime of the persistent spin helix in semiconductor quantum wells with equal Rashba- and linear Dresselhaus spin-orbit interactions. In order to address the temperature dependence of the relevant spin relaxation mechanisms we derive a nd solve semiclassical spin diffusion equations taking into account spin-dependent impurity scattering, cubic Dresselhaus spin-orbit interactions and the effect of electron-electron interactions. For the experimentally relevant regime we find that the lifetime of the persistent spin helix is mainly determined by the interplay of cubic Dresselhaus spin-orbit interaction and electron-electron interactions. We propose that even longer lifetimes can be achieved by generating a spatially damped spin profile instead of the persistent spin helix state.
The nature of the nano-scale environment presents a major challenge for solid-state implementation of spin-based qubits. In this work, a single electron spin in an optically pumped nanometer-sized III-V semiconductor quantum dot is used to control a macroscopic nuclear spin of several thousand nuclei, freezing its decay and leading to spin life-times exceeding 100 seconds at low temperatures. Few-millisecond-fast optical initialization of the nuclear spin is followed by a slow decay exhibiting random telegraph signals at long delay times, arising from low probability electron jumps out of the dot. The remarkably long spin life-time in a dot surrounded by a densely-packed nuclear spin environment arises from the Knight field created by the resident electron, which leads to suppression of nuclear spin depolarization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا