ﻻ يوجد ملخص باللغة العربية
We have used a plane-wave expansion method to theoretically study the far-field head-media optical interaction in HAMR. For the ASTC media stack specifically, we notice the outstanding sensitivity related to interlayers optical thickness for media reflection and magnetic layers light absorption. With 10-nm interlayer thickness change, the recording layer absorption can be changed by more than 25%. The 2-D results are found to correlate well with full 3-D model and magnetic recording tests on flyable disc with different interlayer thickness.
Enhancing light absorption in the recording media layer can improve the energy efficiency and prolong the device lifetime in heat assisted magnetic recording (HAMR). In this work, we report the design and implementation of a resonant nanocavity struc
The reduction of the transition curvature of written bits in heat-assisted magnetic recording (HAMR) is expected to play an important role for the future areal density increase of hard disk drives. Recently a write head design with flipped write and
In this paper we apply an extended Landau-Lifschitz equation, as introduced by Bav{n}as et al. for the simulation of heat-assisted magnetic recording. This equation has similarities with the Landau-Lifshitz-Bloch equation. The Bav{n}as equation is su
Bit Patterned Media (BPM) for magnetic recording provide a route to densities $>1 Tb/in^2$ and circumvents many of the challenges associated with conventional granular media technology. Instead of recording a bit on an ensemble of random grains, BPM
The resolution of optical imaging devices is ultimately limited by the diffraction of light. To circumvent this limit, modern super-resolution microscopy techniques employ active interaction with the object by exploiting its optical nonlinearities, n