ترغب بنشر مسار تعليمي؟ اضغط هنا

Super-resolution linear optical imaging in the far field

69   0   0.0 ( 0 )
 نشر من قبل Jose Inacio Da Costa Filho
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The resolution of optical imaging devices is ultimately limited by the diffraction of light. To circumvent this limit, modern super-resolution microscopy techniques employ active interaction with the object by exploiting its optical nonlinearities, nonclassical properties of the illumination beam, or near-field probing. Thus, they are not applicable whenever such interaction is not possible, for example, in astronomy or non-invasive biological imaging. Far-field, linear-optical super-resolution techniques based on passive analysis of light coming from the object would cover these gaps. In this paper, we present the first proof-of-principle demonstration of such a technique. It works by accessing information about spatial correlations of the image optical field and, hence, about the object itself via measuring projections onto Hermite-Gaussian transverse spatial modes. With a basis of 21 spatial modes in both transverse dimensions, we perform two-dimensional imaging with twofold resolution enhancement beyond the diffraction limit.

قيم البحث

اقرأ أيضاً

Abbes resolution limit, one of the best-known physical limitations, poses a great challenge for any wave systems in imaging, wave transport, and dynamics. Originally formulated in linear optics, this Abbes limit can be broken using nonlinear optical interactions. Here we extend the Abbe theory into a nonlinear regime and experimentally demonstrate a far-field, label-free, and scan-free super-resolution imaging technique based on nonlinear four-wave mixing to retrieve near-field scattered evanescent waves, achieving sub-wavelength resolution of $lambda/15.6$. This method paves the way for application in biomedical imaging, semiconductor metrology, and photolithography.
Raman microscopy is a valuable tool for detecting physical and chemical properties of a sample material. When probing nanomaterials or nanocomposites the spatial resolution of Raman microscopy is not always adequate as it is limited by the optical di ffraction limit. Numerical post-processing with super-resolution algorithms provides a means to enhance resolution and can be straightforwardly applied. The aim of this work is to present interior-point least squares (IPLS) as a powerful tool for super-resolution in Raman imaging through constrained optimisation. IPLSs potential for super-resolution is illustrated on numerically generated test images. Its resolving power is demonstrated on Raman spectroscopic data of a polymer nanowire sample. Comparison to AFM data of the same sample substantiates that the presented method is a promising technique for analysing nanomaterial samples.
The Rayleigh limit has so far applied to all microscopy techniques that rely on linear optical interaction and detection in the far field. Here we demonstrate that detecting the light emitted by an object in higher-order transverse electromagnetic mo des (TEMs) can help achieving sub-Rayleigh precision for a variety of microscopy-related tasks. Using optical heterodyne detection in TEM01, we measure the position of coherently and incoherently emitting objects to within 0.0015 and 0.012 of the Rayleigh limit, respectively, and determine the distance between two incoherently emitting slits positioned within 0.28 of the Rayleigh limit with a precision of 0.019 of the Rayleigh limit. Extending our technique to higher-order TEMs enables full imaging with resolution significantly below the Rayleigh limit in a way that is reminiscent of quantum tomography of optical states.
We report an experimental demonstration of a nonclassical imaging mechanism with super-resolving power beyond the Rayleigh limit. When the classical image is completely blurred out due to the use of a small imaging lens, by taking advantage of the in tensity fluctuation correlation of thermal light, the demonstrated camera recovered the image of the resolution testing gauge. This method could be adapted to long distance imaging, such as satellite imaging, which requires large diameter camera lenses to achieve high image resolution.
It has been shown that negative refraction makes a perfect lens. However, with little loss, the imaging functionality will be strongly compromised. Later on, it was proved that positive refraction from Maxwells fish-eye lens can also makes a perfect lens. However, strong debating happens on the introduced drain problem at the imaging position. In this work, we for the first time find that a solid immersion Maxwells fish-eye lens could be used for super-resolution imaging. We find that it is due to the perfect focusing and total reflection at the outer interface, such that a super-resolution image is formed at the required position in the air background. This simple mechanism will also be valid for other absolute instruments and more versatile super-imaging systems will be anticipated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا