ﻻ يوجد ملخص باللغة العربية
Traditional concept of cognitive radio is the coexistence of primary and secondary user in multiplexed manner. we consider the opportunistic channel access scheme in IEEE 802.11 based networks subject to the interference mitigation scenario. According to the protocol rule and due to the constraint of message passing, secondary user is unaware of the exact state of the primary user. In this paper, we have proposed an online algorithm for the secondary which assist determining a backoff counter or the decision of being idle for utilizing the time/frequency slot unoccupied by the primary user. Proposed algorithm is based on conventional reinforcement learning technique namely Q-Learning. Simulation has been conducted in order to prove the strength of this algorithm and also results have been compared with our contemporary solution of this problem where secondary user is aware of some states of primary user.
In multiuser MIMO (MU-MIMO) LANs, the achievable throughput of a client depends on who are transmitting concurrently with it. Existing MU-MIMO MAC protocols however enable clients to use the traditional 802.11 contention to contend for concurrent tra
With the development of the 5G and Internet of Things, amounts of wireless devices need to share the limited spectrum resources. Dynamic spectrum access (DSA) is a promising paradigm to remedy the problem of inefficient spectrum utilization brought u
In order to meet the constantly increasing demand by mobile terminals for higher data rates with limited wireless spectrum resource, cognitive radio and spectrum aggregation technologies have attracted much attention due to its capacity in improving
Designing clustered unmanned aerial vehicle (UAV) communication networks based on cognitive radio (CR) and reinforcement learning can significantly improve the intelligence level of clustered UAV communication networks and the robustness of the syste
In this paper, we provide a throughput analysis of the IEEE 802.11 protocol at the data link layer in non-saturated traffic conditions taking into account the impact of both transmission channel and capture effects in Rayleigh fading environment. Imp