ﻻ يوجد ملخص باللغة العربية
We consider the number of quantum queries required to determine the coefficients of a degree-d polynomial over GF(q). A lower bound shown independently by Kane and Kutin and by Meyer and Pommersheim shows that d/2+1/2 quantum queries are needed to solve this problem with bounded error, whereas an algorithm of Boneh and Zhandry shows that d quantum queries are sufficient. We show that the lower bound is achievable: d/2+1/2 quantum queries suffice to determine the polynomial with bounded error. Furthermore, we show that d/2+1 queries suffice to achieve probability approaching 1 for large q. These upper bounds improve results of Boneh and Zhandry on the insecurity of cryptographic protocols against quantum attacks. We also show that our algorithms success probability as a function of the number of queries is precisely optimal. Furthermore, the algorithm can be implemented with gate complexity poly(log q) with negligible decrease in the success probability. We end with a conjecture about the quantum query complexity of multivariate polynomial interpolation.
Function inversion is the problem that given a random function $f: [M] to [N]$, we want to find pre-image of any image $f^{-1}(y)$ in time $T$. In this work, we revisit this problem under the preprocessing model where we can compute some auxiliary in
In function inversion, we are given a function $f: [N] mapsto [N]$, and want to prepare some advice of size $S$, such that we can efficiently invert any image in time $T$. This is a well studied problem with profound connections to cryptography, data
Quantum algorithm is an algorithm for solving mathematical problems using quantum systems encoded as information, which is found to outperform classical algorithms in some specific cases. The objective of this study is to develop a quantum algorithm
We investigate the problem of synthesizing T-depth-optimal quantum circuits over the universal fault-tolerant Clifford+T gate set, where the implementation of the non-Clifford T-gate is the most expensive. We apply the nested-meet-in-the-middle(MIT