ترغب بنشر مسار تعليمي؟ اضغط هنا

Updated 24 $mumathrm{m}$ Period-Luminosity Relation Derived from Galactic Cepheids

112   0   0.0 ( 0 )
 نشر من قبل Chow-Choong Ngeow
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we updated the catalog of Galactic Cepheids with $24mumathrm{m}$ photometry by cross-matching the positions of known Galactic Cepheids to the recently released MIPSGAL point source catalog. We have added 36 new sources featuring MIPSGAL photometry in our analysis, thus increasing the existing sample to 65. Six different sources of compiled Cepheid distances were used to establish a $24mumathrm{m}$ period-luminosity (P-L) relation. Our recommended $24mumathrm{m}$ P-L relation is $M_{24mumathrm{m}}=-3.18(pm0.10)log P - 2.46(pm0.10)$, with an estimated intrinsic dispersion of 0.20 mag, and is derived from 58 Cepheids exhibiting distances based on a calibrated Wesenheit function. The slopes of the P-L relations were steepest when tied solely to the 10 Cepheids exhibiting trigonometric parallaxes from the Hubble Space Telescope and Hipparcos. Statistical tests suggest that these P-L relations are significantly different from those associated with other methods of distance determination, and simulations indicate that difference may arise from the small sample size.



قيم البحث

اقرأ أيضاً

Classical Cepheids (DCEPs) are the most important primary indicators for the extragalactic distance scale. Establishing the dependence on metallicity of their period--luminosity and period--Wesenheit (PL/PW) relations has deep consequences on the est imate of the Hubble constant (H$_0$). We aim at investigating the dependence on metal abundance ([Fe/H]) of the PL/PW relations for Galactic DCEPs. We combined proprietary and literature photometric and spectroscopic data, gathering a total sample of 413 Galactic DCEPs (372 fundamental mode -- DCEP_F and 41 first overtone -- DCEP_1O) and constructed new metallicity-dependent PL/PW relations in the near infra-red (NIR) adopting the Astrometric Based Luminosity. We find indications that the slopes of the PL$(K_S)$ and PW$(J,K_S)$ relations for Galactic DCEPs might depend on metallicity when compared to the Large Magellanic Cloud relationships. Therefore, we have used a generalized form of the PL/PW relations to simultaneously take into account the metallicity dependence of the slope and intercept of these relations. We calculated PL/PW relations which, for the first time, explicitly include a metallicity dependence of both the slope and intercept terms. Although the insufficient quality of the available data makes our results not yet conclusive, they are relevant from a methodological point of view. The new relations are linked to the geometric measurement of the distance to the Large Magellanic Cloud and allowed us to estimate a {it Gaia} DR2 parallax zero point offset $Delta varpi$=0.0615$pm$0.004 mas from the dataset of DCEPs used in this work.
106 - C. Ngeow 2008
Using Spitzer archival data from the SAGE (Surveying the Agents of a Galaxys Evolution) program, we derive the Cepheid period-luminosity (P-L) relation at 3.6, 4.5, 5.8 and 8.0 microns for Large Magellanic Cloud (LMC) Cepheids. These P-L relations ca n be used, for example, in future extragalactic distance scale studies carried out with the James Webb Space Telescope. We also derive Cepheid period-color (P-C) relations in these bands and find that the slopes of the P-C relations are relatively flat. We test the nonlinearity of these P-L relations with the F statistical test, and find that the 3.6 micron, 4.5 micron and 5.8 micron P-L relations are consistent with linearity. However the 8.0 micron P-L relation presents possible but inconclusive evidence of nonlinearity.
108 - C. Ngeow 2008
In this Paper, we have derived Cepheid period-luminosity (P-L) relations for the Large Magellanic Cloud (LMC) fundamental mode Cepheids, based on the data released from OGLE-III. We have applied an extinction map to correct for the extinction of thes e Cepheids. In addition to the VIW band P-L relations, we also include JHK and four Spitzer IRAC band P-L relations, derived by matching the OGLE-III Cepheids to the 2MASS and SAGE datasets, respectively. We also test the non-linearity of the Cepheid P-L relations based on extinction-corrected data. Our results (again) show that the LMC P-L relations are non-linear in VIJH bands and linear in KW and the four IRAC bands, respectively.
301 - M.A.T. Groenewegen 2020
The flux-weighted gravity-luminosity relation (FWGLR) is investigated for a sample of 477 classical Cepheids (CCs), including stars that have been classified in the literature as such but are probably not. The luminosities are taken from the literatu re, based on the fitting of the spectral energy distributions (SEDs) assuming a certain distance and reddening. The flux-weighted gravity (FWG) is taken from gravity and effective temperature determinations in the literature based on high-resolution spectroscopy. There is a very good agreement between the theoretically predicted and observed FWG versus pulsation period relation that could serve in estimating the FWG (and $log g$) in spectroscopic studies with a precision of 0.1~dex. As was known in the literature, the theoretically predicted FWGLR relation for CCs is very tight and is not very sensitive to metallicity (at least for LMC and solar values), rotation rate, and crossing of the instability strip. The observed relation has a slightly different slope and shows more scatter (0.54~dex). This is due both to uncertainties in the distances and to the pulsation phase averaged FWG values. Data from future Gaia data releases should reduce these errors, and then the FWGLR could serve as a powerful tool in Cepheid studies.
In this paper, we derive the period-luminosity (P-L) relation for Large Magellanic Cloud (LMC) Cepheids based on mid-infrared AKARI observations. AKARIs IRC sources were matched to the OGLE-III LMC Cepheid catalog. Together with the available I band light curves from the OGLE-III catalog, potential false matches were removed from the sample. This procedure excluded most of the sources in the S7 and S11 bands: hence only the P-L relation in the N3 band was derived in this paper. Random-phase corrections were included in deriving the P-L relation for the single epoch AKARI data, even though the derived P-L relation is consistent with the P-L relation without random-phase correction, though there is a sim 7 per-cent improvement in the dispersion of the P-L relation. The final adopted N3 band P-L relation is N3 = -3.246 log(P) + 15.844, with a dispersion of 0.149.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا