ترغب بنشر مسار تعليمي؟ اضغط هنا

The Period-Luminosity Relation for the Large Magellanic Cloud Cepheids Derived from Spitzer Archival Data

104   0   0.0 ( 0 )
 نشر من قبل Chow-Choong Ngeow
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C. Ngeow




اسأل ChatGPT حول البحث

Using Spitzer archival data from the SAGE (Surveying the Agents of a Galaxys Evolution) program, we derive the Cepheid period-luminosity (P-L) relation at 3.6, 4.5, 5.8 and 8.0 microns for Large Magellanic Cloud (LMC) Cepheids. These P-L relations can be used, for example, in future extragalactic distance scale studies carried out with the James Webb Space Telescope. We also derive Cepheid period-color (P-C) relations in these bands and find that the slopes of the P-C relations are relatively flat. We test the nonlinearity of these P-L relations with the F statistical test, and find that the 3.6 micron, 4.5 micron and 5.8 micron P-L relations are consistent with linearity. However the 8.0 micron P-L relation presents possible but inconclusive evidence of nonlinearity.



قيم البحث

اقرأ أيضاً

319 - C. Ngeow 2007
A number of recent works have suggested that the period-luminosity (PL) relation for the Large Magellanic Cloud (LMC) Cepheids exhibits a controversial nonlinear feature with a break period at 10 days. Therefore, the aim of this Research Note is to t est the linearity/nonlinearity of the PL relations for the LMC Cepheids in BVIcJHKs band, as well as in the Wesenheit functions. We show that simply comparing the long and short period slopes, together with their associate d standard deviations, leads to a strictly larger error rate than applying rigorous statistical tests such as the F-test. We applied various statistical tests to the current published LMC Cepheid data. These statistical tests include the F-test, the testimator test, and the Schwarz information criterion (SIC) method. The results from these statistical tests strongly suggest that the LMC PL relation is nonlinear in BVIcJH band but linear in the Ks band and in the Wesenheit functions. Using the properties of period-color relations at maximum light and multi-phase relations, we believe that the nonlinear PL relation is not caused by extinction errors.
In this work, we updated the catalog of Galactic Cepheids with $24mumathrm{m}$ photometry by cross-matching the positions of known Galactic Cepheids to the recently released MIPSGAL point source catalog. We have added 36 new sources featuring MIPSGAL photometry in our analysis, thus increasing the existing sample to 65. Six different sources of compiled Cepheid distances were used to establish a $24mumathrm{m}$ period-luminosity (P-L) relation. Our recommended $24mumathrm{m}$ P-L relation is $M_{24mumathrm{m}}=-3.18(pm0.10)log P - 2.46(pm0.10)$, with an estimated intrinsic dispersion of 0.20 mag, and is derived from 58 Cepheids exhibiting distances based on a calibrated Wesenheit function. The slopes of the P-L relations were steepest when tied solely to the 10 Cepheids exhibiting trigonometric parallaxes from the Hubble Space Telescope and Hipparcos. Statistical tests suggest that these P-L relations are significantly different from those associated with other methods of distance determination, and simulations indicate that difference may arise from the small sample size.
194 - Ming Yang , B. W. Jiang 2010
From previous samples of Red Supergiants (RSGs) by various groups, 191 objects are assembled to compose a large sample of RSG candidates in LMC. For 189 of them, the identity as a RSG is verified by their brightness and color indexes in several near- and mid-infrared bands related to the 2MASS JHKs bands and the Spitzer/IRAC and Spitzer/MIPS bands. From the visual time-series photometric observations by the ASAS and MACHO projects which cover nearly 8-10 years, the period and amplitude of light variation are analyzed carefully using both the PDM and Period04 methods. According to the properties of light variation, these objects are classified into five categories: (1) 20 objects are saturated in photometry or located in crowded stellar field with poor photometric results, (2) 35 objects with too complex variation to have any certain period, (3) 23 objects with irregular variation, (4) 16 objects with semi-regular variation, and (5) 95 objects with Long Secondary Period (LSP) among which 31 have distinguishable short period, and 51 have a long period shorter than 3000 days that can be determined with reasonable accuracy. For the semi-regular variables and the LSP variables with distinguishable short period, the period-luminosity relation is analyzed in the visual, near-infrared and mid-infrared bands. It is found that the P-L relation is tight in the infrared bands such as the 2MASS JHKs bands and the Spitzer/IRAC bands, in particular in the Spitzer/IRAC [3.6] and [4.5] bands; meanwhile, the P-L relation is relatively sparse in the V band which may be caused by the inhomogeneous interstellar extinction. The results are compared with others P-L relationships for RSGs and the P-L sequences of red giants in LMC.
105 - C. Ngeow 2008
In this Paper, we have derived Cepheid period-luminosity (P-L) relations for the Large Magellanic Cloud (LMC) fundamental mode Cepheids, based on the data released from OGLE-III. We have applied an extinction map to correct for the extinction of thes e Cepheids. In addition to the VIW band P-L relations, we also include JHK and four Spitzer IRAC band P-L relations, derived by matching the OGLE-III Cepheids to the 2MASS and SAGE datasets, respectively. We also test the non-linearity of the Cepheid P-L relations based on extinction-corrected data. Our results (again) show that the LMC P-L relations are non-linear in VIJH bands and linear in KW and the four IRAC bands, respectively.
191 - Ming Yang , B. W. Jiang 2012
The characteristics of light variation of RSGs in SMC are analyzed based on the nearly 8-10 year long data collected by the ASAS and MACHO projects. The identified 126 RSGs are classified into five categories accordingly: 20 with poor photometry, 55 with no reliable period, 6 with semi-regular variation, 15 with Long Secondary Period (LSP) and distinguishable short period and 30 with only LSP. For the semi-regular variables and the LSP variables with distinguishable short period, the Ks band period-luminosity (P-L) relation is analyzed and compared with that of the Galaxy, LMC and M33. It is found that the RSGs in these galaxies obey similar P-L relation except the Galaxy. In addition, the P-L relations in the infrared bands, namely the 2MASS JHKs, Spitzer/IRAC and Spitzer/MIPS 24 {mu}m bands, are derived with high reliability. The best P-L relation occurs in the Spitzer/IRAC [3.6] and [4.5] bands. Based on the comparison with the theoretical calculation of the P-L relation, the mode of pulsation of RSGs in SMC is suggested to be the first overtone radial mode.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا