ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantized conductance through the quantum evaporation of bosonic atoms

253   0   0.0 ( 0 )
 نشر من قبل David Papoular
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze theoretically the quantization of conductance occurring with cold bosonic atoms trapped in two reservoirs connected by a constriction with an attractive gate potential. We focus on temperatures slightly above the condensation threshold in the reservoirs. We show that a conductance step occurs, coinciding with the appearance of a condensate in the constriction. Conductance relies on a collective process involving the quantum condensation of an atom into an elementary excitation and the subsequent quantum evaporation of an atom, in contrast with ballistic fermion transport. The value of the bosonic conductance plateau is strongly enhanced compared to fermions and explicitly depends on temperature. We highlight the role of weak repulsive interactions between the bosons in preventing them from collapsing into the constriction.


قيم البحث

اقرأ أيضاً

We numerically investigate, using the time evolving block decimation algorithm, the quantum transport of ultra-cold bosonic atoms in a double well optical lattice through slow and periodic modulation of the lattice parameters (intra- and inter-well t unneling, chemical potential, etc.). The transport of atoms does not depend on the rate of change of the parameters (as along as the change is slow) and can distribute atoms in optical lattices at the quantized level without involving external forces. The transport of atoms depends on the atom filling in each double well and the interaction between atoms. In the strongly interacting region, the bosonic atoms share the same transport properties as non-interacting fermions with quantized transport at the half filling and no atom transport at the integer filling. In the weakly interacting region, the number of the transported atoms is proportional to the atom filling. We show the signature of the quantum transport from the momentum distribution of atoms that can measured in the time of flight image. A semiclassical transport model is developed to explain the numerically observed transport of bosonic atoms in the non-interacting and strongly interacting limits. The scheme may serve as an quantized battery for atomtronics applications.
We employ the exact diagonalization method to analyze the possibility of generating strongly correlated states in two-dimensional clouds of ultracold bosonic atoms which are subjected to a geometric gauge field created by coupling two internal atomic states to a laser beam. Tuning the gauge field strength, the system undergoes stepwise transitions between different ground states, which we describe by analytical trial wave functions, amongst them the Pfaffian, the Laughlin, and a Laughlin quasiparticle many-body state. The adiabatic following of the center of mass movement by the lowest energy dressed internal state, is lost by the mixing of the second internal state. This mixture can be controlled by the intensity of the laser field. The non-adiabaticity is inherent to the considered setup, and is shown to play the role of circular asymmetry. We study its influence on the properties of the ground state of the system. Its main effect is to reduce the overlap of the numerical solutions with the analytical trial expressions by occupying states with higher angular momentum. Thus, we propose generalized wave functions arising from the Laughlin and Pfaffian wave function by including components, where extra Jastrow factors appear, while preserving important features of these states. We analyze quasihole excitations over the Laughlin and generalized Laughlin states, and show that they possess effective fractional charge and obey anyonic statistics. Finally, we study the energy gap over the Laughlin state as the number of particles is increased keeping the chemical potential fixed. The gap is found to decrease as the number of particles is increased, indicating that the observability of the Laughlin state is restricted to a small number of particles.
Using near-exact numerical simulations we study the propagation of an impurity through a one-dimensional Bose lattice gas for varying bosonic interaction strengths and filling factors at zero temperature. The impurity is coupled to the Bose gas and c onfined to a separate tilted lattice. The precise nature of the transport of the impurity is specific to the excitation spectrum of the Bose gas which allows one to measure properties of the Bose gas non-destructively, in principle, by observing the impurity; here we focus on the spatial and momentum distributions of the impurity as well as its reduced density matrix. For instance we show it is possible to determine whether the Bose gas is commensurately filled as well as the bandwidth and gap in its excitation spectrum. Moreover, we show that the impurity acts as a witness to the cross-over of its environment from the weakly to the strongly interacting regime, i.e., from a superfluid to a Mott insulator or Tonks-Girardeau lattice gas and the effects on the impurity in both of these strongly-interacting regimes are clearly distinguishable. Finally, we find that the spatial coherence of the impurity is related to its propagation through the Bose gas, giving an experimentally controllable example of noise-enhanced quantum transport.
More than 30 years ago, Thouless introduced the concept of a topological charge pump that would enable the robust transport of charge through an adiabatic cyclic evolution of the underlying Hamiltonian. In contrast to classical transport, the transpo rted charge was shown to be quantized and purely determined by the topology of the pump cycle, making it robust to perturbations. On a fundamental level, the quantized charge transport can be connected to a topological invariant, the Chern number, first introduced in the context of the integer quantum Hall effect. A Thouless quantum pump may therefore be regarded as a dynamical version of the integer quantum Hall effect. Here, we report on the realization of such a topological charge pump using ultracold bosonic atoms that form a Mott insulator in a dynamically controlled optical superlattice potential. By taking in-situ images of the atom cloud, we observe a quantized deflection per pump cycle. We reveal the genuine quantum nature of the pump by showing that, in contrast to ground state particles, a counterintuitive reversed deflection occurs when particles are prepared in the first excited band. Furthermore, we were able to directly demonstrate that the system undergoes a controlled topological phase transition in higher bands when tuning the superlattice parameters.
We report on the observation of the Meissner effect in bosonic flux ladders of ultracold atoms. Using artificial gauge fields induced by laser-assisted tunneling, we realize arrays of decoupled ladder systems that are exposed to a uniform magnetic fi eld. By suddenly decoupling the ladders and projecting into isolated double wells, we are able to measure the currents on each side of the ladder. For large coupling strengths along the rungs of the ladder, we find a saturated maximum chiral current corresponding to a full screening of the artificial magnetic field. For lower coupling strengths, the chiral current decreases in good agreement with expectations of a vortex lattice phase. Our work marks the first realization of a low-dimensional Meissner effect and, furthermore, it opens the path to exploring interacting particles in low dimensions exposed to a uniform magnetic field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا