ﻻ يوجد ملخص باللغة العربية
We study the non-linear conductance $mathcal{G}simpartial^2I/partial V^2|_{V=0}$ in coherent quasi-1D weakly disordered metallic wires. The analysis is based on the calculation of two fundamental correlators (correlations of conductances functional derivatives and correlations of injectivities), which are obtained explicitly by using diagrammatic techniques. In a coherent wire of length $L$, we obtain $mathcal{G}sim0.006,E_mathrm{Th}^{-1}$ (and $langlemathcal{G}rangle=0$), where $E_mathrm{Th}=D/L^2$ is the Thouless energy and $D$ the diffusion constant; the small dimensionless factor results from screening, i.e. cannot be obtained within a simple theory for non-interacting electrons. Electronic interactions are also responsible for an asymmetry under magnetic field reversal: the antisymmetric part of the non-linear conductance (at high magnetic field) being much smaller than the symmetric one, $mathcal{G}_asim0.001,(gE_mathrm{Th})^{-1}$, where $ggg1$ is the dimensionless (linear) conductance of the wire. Weakly coherent regimes are also studied: for $L_varphill L$, where $L_varphi$ is the phase coherence length, we get $mathcal{G}sim(L_varphi/L)^{7/2}E_mathrm{Th}^{-1}$, and $mathcal{G}_asim(L_varphi/L)^{11/2}(gE_mathrm{Th})^{-1}llmathcal{G}$ (at high magnetic field). When thermal fluctuations are important, $L_Tll L_varphill L$ where $L_T=sqrt{D/T}$, we obtain $mathcal{G}sim(L_T/L)(L_varphi/L)^{7/2}E_mathrm{Th}^{-1}$ (the result is dominated by the effect of screening) and $mathcal{G}_asim(L_T/L)^2(L_varphi/L)^{7/2}(gE_mathrm{Th})^{-1}$. All the precise dimensionless prefactors are obtained. Crossovers towards the zero magnetic field regime are also analysed.
Superconducting wires with broken time-reversal and spin-rotational symmetries can exhibit two distinct topological gapped phases and host bound Majorana states at the phase boundaries. When the wire is tuned to the transition between these two phase
We study the conductance of disordered graphene superlattices with short-range structural correlations. The system consists of electron- and hole-doped graphenes of various thicknesses, which fluctuate randomly around their mean value. The effect of
We study numerically the charge conductance distributions of disordered quantum spin-Hall (QSH) systems using a quantum network model. We have found that the conductance distribution at the metal-QSH insulator transition is clearly different from tha
We have measured the temperature dependence of the conductance in long V-groove quantum wires (QWRs) fabricated in GaAs/AlGaAs heterostructures. Our data is consistent with recent theories developed within the framework of the Luttinger liquid model,
We show a dramatic deviation from ergodicity for the conductance fluctuations in graphene. In marked contrast to the ergodicity of dirty metals, fluctuations generated by varying magnetic field are shown to be much smaller than those obtained when sw