ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Ergodicity & Microscopic Symmetry Breaking of the Conductance Fluctuations in Disordered Mesoscopic Graphene

145   0   0.0 ( 0 )
 نشر من قبل Jonathan Bird Prof.
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show a dramatic deviation from ergodicity for the conductance fluctuations in graphene. In marked contrast to the ergodicity of dirty metals, fluctuations generated by varying magnetic field are shown to be much smaller than those obtained when sweeping Fermi energy. They also exhibit a strongly anisotropic response to the symmetry-breaking effects of a magnetic field, when applied perpendicular or parallel to the graphene plane. These results reveal a complex picture of quantum interference in graphene, whose description appears more challenging than for conventional mesoscopic systems.



قيم البحث

اقرأ أيضاً

We study fluctuations of the conductance of micron-sized graphene devices as a function of the Fermi energy and magnetic field. The fluctuations are studied in combination with analysis of weak localization which is determined by the same scattering mechanisms. It is shown that the variance of conductance fluctuations depends not only on inelastic scattering that controls dephasing but also on elastic scattering. In particular, contrary to its effect on weak localization, strong intervalley scattering suppresses conductance fluctuations in graphene. The correlation energy, however, is independent of the details of elastic scattering and can be used to determine the electron temperature of graphene structures.
Superconducting wires with broken time-reversal and spin-rotational symmetries can exhibit two distinct topological gapped phases and host bound Majorana states at the phase boundaries. When the wire is tuned to the transition between these two phase s and the gap is closed, Majorana states become delocalized leading to a peculiar critical state of the system. We study transport properties of this critical state as a function of the length $L$ of a disordered multichannel wire. Applying a non-linear supersymmetric sigma model of symmetry class D with two replicas, we identify the average conductance, its variance and the third cumulant in the whole range of $L$ from the Ohmic limit of short wires to the regime of a broad conductance distribution when $L$ exceeds the correlation length of the system. In addition, we calculate the average shot noise power and variance of the topological index for arbitrary $L$. The general approach developed in the paper can also be applied to study combined effects of disorder and topology in wires of other symmetries.
We study the conductance of disordered graphene superlattices with short-range structural correlations. The system consists of electron- and hole-doped graphenes of various thicknesses, which fluctuate randomly around their mean value. The effect of the randomness on the probability of transmission through the system of various sizes is studied. We show that in a disordered superlattice the quasiparticle that approaches the barrier interface almost perpendicularly transmits through the system. The conductivity of the finite-size system is computed and shown that the conductance vanishes when the sample size becomes very large, whereas for some specific structures the conductance tends to a nonzero value in the thermodynamics limit.
We study the non-linear conductance $mathcal{G}simpartial^2I/partial V^2|_{V=0}$ in coherent quasi-1D weakly disordered metallic wires. The analysis is based on the calculation of two fundamental correlators (correlations of conductances functional d erivatives and correlations of injectivities), which are obtained explicitly by using diagrammatic techniques. In a coherent wire of length $L$, we obtain $mathcal{G}sim0.006,E_mathrm{Th}^{-1}$ (and $langlemathcal{G}rangle=0$), where $E_mathrm{Th}=D/L^2$ is the Thouless energy and $D$ the diffusion constant; the small dimensionless factor results from screening, i.e. cannot be obtained within a simple theory for non-interacting electrons. Electronic interactions are also responsible for an asymmetry under magnetic field reversal: the antisymmetric part of the non-linear conductance (at high magnetic field) being much smaller than the symmetric one, $mathcal{G}_asim0.001,(gE_mathrm{Th})^{-1}$, where $ggg1$ is the dimensionless (linear) conductance of the wire. Weakly coherent regimes are also studied: for $L_varphill L$, where $L_varphi$ is the phase coherence length, we get $mathcal{G}sim(L_varphi/L)^{7/2}E_mathrm{Th}^{-1}$, and $mathcal{G}_asim(L_varphi/L)^{11/2}(gE_mathrm{Th})^{-1}llmathcal{G}$ (at high magnetic field). When thermal fluctuations are important, $L_Tll L_varphill L$ where $L_T=sqrt{D/T}$, we obtain $mathcal{G}sim(L_T/L)(L_varphi/L)^{7/2}E_mathrm{Th}^{-1}$ (the result is dominated by the effect of screening) and $mathcal{G}_asim(L_T/L)^2(L_varphi/L)^{7/2}(gE_mathrm{Th})^{-1}$. All the precise dimensionless prefactors are obtained. Crossovers towards the zero magnetic field regime are also analysed.
The phase of Aharonov-Bohm oscillations in mesoscopic metal rings in the presence of a magnetic field can be modulated by application of a DC-bias current I_DC. We address the question of how a variation of I_DC and hence of the microscopic phases of the electronic wave functions results in the macroscopic phase of the conductance oscillations. Whereas the first one can be varied continuously the latter has to be quantized for a ring in two-wire configuration by virtue of the Onsager symmetry relations. We observe a correlation between a phase flip by +/- pi and the amplitude of the oscillations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا