ترغب بنشر مسار تعليمي؟ اضغط هنا

Lattice dynamical properties of superconducting SrPt$_3$P studied via inelastic x-ray scattering and density functional perturbation theory

84   0   0.0 ( 0 )
 نشر من قبل Diego Zocco
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a study of the lattice dynamical properties of superconducting SrPt$_3$P ($T_c = 8.4$ K) via high-resolution inelastic x-ray scattering (IXS) and ab initio calculations. Density functional perturbation theory including spin-orbit coupling (SOC) results in enhanced electron-phonon coupling (EPC) for the optic phonon modes originating from the Pt(I) atoms, with energies $sim 5$ meV, resulting in a large EPC constant $lambda sim 2$. An overall softening of the IXS powder spectra occurs from room to low temperatures, consistent with the predicted strong EPC and with recent specific-heat experiments ($2Delta_0 / k_{mathrm{B}}T_c sim 5$). The low-lying phonon modes observed in the experiments are approximately 1.5 meV harder than the corresponding calculated phonon branch. Moreover, we do not find any changes in the spectra upon entering the superconducting phase. We conclude that current theoretical calculations underestimate the energy of the lowest band of phonon modes indicating that the coupling of these modes to the electronic subsystem is overestimated.

قيم البحث

اقرأ أيضاً

The Liouville-Lanczos approach to linear-response time-dependent density-functional theory is generalized so as to encompass electron energy-loss and inelastic X-ray scattering spectroscopies in periodic solids. The computation of virtual orbitals an d the manipulation of large matrices are avoided by adopting a representation of response orbitals borrowed from (time-independent) density-functional perturbation theory and a suitable Lanczos recursion scheme. The latter allows the bulk of the numerical work to be performed at any given transferred momentum only once, for a whole extended frequency range. The numerical complexity of the method is thus greatly reduced, making the computation of the loss function over a wide frequency range at any given transferred momentum only slightly more expensive than a single standard ground-state calculation, and opening the way to computations for systems of unprecedented size and complexity. Our method is validated on the paradigmatic examples of bulk silicon and aluminum, for which both experimental and theoretical results already exist in the literature.
We report an inelastic x-ray scattering investigation of phonons in FeSe superconductor. Comparing the experimental phonon dispersion with density functional theory (DFT) calculations in the non-magnetic state, we found a significant disagreement bet ween them. Improved overall agreement was obtained by allowing for spin-polarization in the DFT calculations, despite the absence of magnetic order in the experiment. This calculation gives a realistic approximation, at DFT level, of the disordered paramagnetic state of FeSe, in which strong spin fluctuations are present.
We investigate the dispersion and temperature dependence of a number of phonons in the recently discovered superconductor CaC6 utilizing inelastic x-ray scattering. Four [00L] and two ab-plane phonon modes are observed, and measured at temperatures b oth above and below T_c. In general, our measurements of phonon dispersions are in good agreement with existing theoretical calculations of the phonon dispersion. This is significant in light of several discrepancies between experimental measurements of phonon-derived quantities and theoretical calculations. The present work suggests that the origin of these discrepancies lies in the understanding of the electron-phonon coupling in this material, rather than in the phonons themselves.
The magnetic penetration depth ($lambda$) as a function of applied magnetic field and temperature in SrPt$_3$P($T_csimeq8.4$ K) was studied by means of muon-spin rotation ($mu$SR). The dependence of $lambda^{-2}$ on temperature suggests the existence of a single $s-$wave energy gap with the zero-temperature value $Delta=1.58(2)$ meV. At the same time $lambda$ was found to be strongly field dependent which is the characteristic feature of the nodal gap and/or multi-gap systems. The multi-gap nature of the superconduicting state is further confirmed by observation of an upward curvature of the upper critical field. This apparent contradiction would be resolved with SrPt$_3$P being a two-band superconductor with equal gaps but different coherence lengths within the two Fermi surface sheets.
The lattice dynamics of LaFeAsO_{1-x}F_{x} (x=0, 0.1) and PrFeAsO_{1-y} (y~0.1) are investigated using inelastic x-ray scattering and ab-initio calculation. Measurements of powder samples provide an approximation to the phonon DOS, while dispersion i s measured from a single crystal of PrFeAsO_{1-y}. A model that agrees reasonably well with all of the data at room temperature is built from results of ab-initio calculations by softening the strength of the Fe-As bond by 30%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا