ترغب بنشر مسار تعليمي؟ اضغط هنا

SrPt$_3$P: two-band single-gap superconductor

70   0   0.0 ( 0 )
 نشر من قبل Rustem Khasanov
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The magnetic penetration depth ($lambda$) as a function of applied magnetic field and temperature in SrPt$_3$P($T_csimeq8.4$ K) was studied by means of muon-spin rotation ($mu$SR). The dependence of $lambda^{-2}$ on temperature suggests the existence of a single $s-$wave energy gap with the zero-temperature value $Delta=1.58(2)$ meV. At the same time $lambda$ was found to be strongly field dependent which is the characteristic feature of the nodal gap and/or multi-gap systems. The multi-gap nature of the superconduicting state is further confirmed by observation of an upward curvature of the upper critical field. This apparent contradiction would be resolved with SrPt$_3$P being a two-band superconductor with equal gaps but different coherence lengths within the two Fermi surface sheets.

قيم البحث

اقرأ أيضاً

The thermal conductivity of the iron-based superconductor FeSe was measured at temperatures down to 50 mK in magnetic fields up to 17 T. In zero magnetic field, the electronic residual linear term in the T = 0 limit, kappa_0/T, is vanishingly small. Application of a magnetic field H causes no increase in kappa_0/T initially. Those two observations show that there are no zero-energy quasiparticles that carry heat and therefore no nodes in the superconducting gap of FeSe. The full field dependence of kappa_0/T has the classic shape of a two-band superconductor, such as MgB2: it rises exponentially at very low field, with a characteristic field H* << Hc2, and then more slowly up to the upper critical field Hc2. This shows that the superconducting gap is very small on one of the pockets in the Fermi surface of FeSe.
We present a study of the lattice dynamical properties of superconducting SrPt$_3$P ($T_c = 8.4$ K) via high-resolution inelastic x-ray scattering (IXS) and ab initio calculations. Density functional perturbation theory including spin-orbit coupling (SOC) results in enhanced electron-phonon coupling (EPC) for the optic phonon modes originating from the Pt(I) atoms, with energies $sim 5$ meV, resulting in a large EPC constant $lambda sim 2$. An overall softening of the IXS powder spectra occurs from room to low temperatures, consistent with the predicted strong EPC and with recent specific-heat experiments ($2Delta_0 / k_{mathrm{B}}T_c sim 5$). The low-lying phonon modes observed in the experiments are approximately 1.5 meV harder than the corresponding calculated phonon branch. Moreover, we do not find any changes in the spectra upon entering the superconducting phase. We conclude that current theoretical calculations underestimate the energy of the lowest band of phonon modes indicating that the coupling of these modes to the electronic subsystem is overestimated.
The first-order transition at $T_{rm 0} = 270$ K for the platinum-based SrPt$_2$Sb$_2$ superconductor was investigated using X-ray diffraction and magnetic susceptibility measurements. When polycrystalline SrPt$_2$Sb$_2$ was cooled down through $T_{r m 0}$, the structure was transformed from monoclinic to a modulated orthorhombic structure, and no magnetic order was formed, which illustrates the possibility of a charge density wave (CDW) transition at $T_{rm 0}$. SrPt$_2$Sb$_2$ can thus be a new example to examine the interplay of CDW and superconductivity in addition to SrPt$_2$As$_2$, BaPt$_2$As$_2$ and LaPt$_2$Si$_2$. It is unique that the average structure of the low-temperature phase has higher symmetry than that of the high-temperature phase.
We use tunable laser based Angle Resolved Photoemission Spectroscopy to study the electronic structure of the multi-band superconductor, MgB2. These results form the base line for detailed studies of superconductivity in multi-band systems. We find t hat the magnitude of the superconducting gap on both sigma bands follows a BCS-like variation with temperature with Delta0 ~7 meV. The value of the gap is isotropic within experimental uncertainty and in agreement with pure a s-wave pairing symmetry. We also observe in-gap states confined to kF of the sigma band that occur at some locations of the sample surface. The energy of this excitation, ~3 meV, is inconsistent with scattering from the pi band.
215 - G. Singh , A. Jouan , G. Herranz 2018
In multiorbital materials, superconductivity can exhibit new exotic forms that include several coupled condensates. In this context, quantum confinement in two-dimensional superconducting oxide interfaces offers new degrees of freedom to engineer the band structure and selectively control 3d-orbitals occupancy by electrostatic doping. However, the presence of multiple superconducting condensates in these systems has not yet been demonstrated. Here, we use resonant microwave transport to extract the superfluid stiffness of the (110)-oriented LaAlO3/SrTiO3 interface in the entire phase diagram. We evidence a transition from single-band to two-band superconductivity driven by electrostatic doping, which we relate to the filling of the different 3d-orbitals based on numerical simulations of the quantum well. Interestingly, the superconducting transition temperature decreases while the second band is populated, which challenges the Bardeen-Cooper-Schrieffer theory. To explain this behaviour, we propose that the superconducting order parameters associated with the two bands have opposite signs with respect to each other.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا