ﻻ يوجد ملخص باللغة العربية
We investigated the influence of different Ag additions (up to 10 wt %) on the superconducting properties of FeSe0.94. The structural investigations (XRD and SEM) indicated that Ag is present in three different forms. Ag at grain boundaries supports the excellent intergrain connections and reduces superconducting transition width to values smaller than 1K at B=0 and smaller than 2.74 K at B=14 T. Ag insertion in the crystal lattice unit cell provides additional carriers and changes the electron hole imbalance in FeSe0.94. This results in an increase in the magnetoresistive effect (MR) and critical temperature (Tc). Reacted Ag forms a small amount (~1%) of Ag2Se impurity phase, which may increase the pinning energy in comparison with that of the undoped sample. The enhanced upper critical field (Bc2) is also a result of the increased impurity scattering. Thus, unlike cuprates Ag addition enhances the Tc, Bc2, pinning energy and MR making the properties of polycrystalline FeSe0.94 similar to those of single crystals.
The tetragonal FeSe phase is an intensively investigated iron based superconductor. In this study we examined the influence of Ag addition on the superconducting properties of selenium deficient polycrystalline FeSe0.94. The samples were obtained by
We report enhancement in the magnetic critical current density of indium added polycrystalline SmFeAsO1-xFx. The value of magnetic Jc is around 25 kA/cm2 at 4.2 K under self-magnetic field. Polycrystalline SmFeAsO1-xFx is mainly composed of the super
We have investigated the substitution effect of Eu on the superconductivity in La2-xEuxO2Bi3Ag0.6Sn0.4S6. Recently, we reported an observation of superconductivity at 0.5 K in a layered oxychalcogenide La2O2Bi3AgS6. The Sn doping at the Ag site was f
To investigate the interlayer interaction in the recently synthesized high-entropy-alloy-type (HEA-type) REO0.5F0.5BiS2 superconductors (RE: rare earth), we have systematically synthesized samples with close lattice parameters and different mixing en
Enhancements of superconducting properties were observed in FeSe wires using a quenching technique. Zero resistivity was achieved at about 10 K in quenched wires, which is about 2 K higher than that of polycrystalline FeSe bulk. Furthermore, transpor