ﻻ يوجد ملخص باللغة العربية
Although over the past number of years there have been many advances in the materials aspects of topological insulators (TI), one of the ongoing challenges with these materials is the protection of them against aging. In particular, the recent development of low-carrier-density bulk-insulating Bi$_2$Se$_3$ thin films and their sensitivity to air demands reliable capping layers to stabilize their electronic properties. Here, we study the stability of the low-carrier-density Bi$_2$Se$_3$ thin films in air with and without various capping layers using DC and THz probes. Without any capping layers, the carrier density increases by ~150% over a week and by ~280% over 9 months. In situ-deposited Se and ex situ-deposited Poly(methyl methacrylate) (PMMA) suppresses the aging effect to ~27% and ~88% respectively over 9 months. The combination of effective capping layers and low-carrier-density TI films will open up new opportunities in topological insulators.
An important challenge in the field of topological materials is to carefully disentangle the electronic transport contribution of the topological surface states from that of the bulk. For Bi$_2$Te$_3$ topological insulator samples, bulk single crysta
Alloys of Bi$_2$Te$_3$ and Sb$_2$Te$_3$ ((Bi$_{1-x}$Sb$_x$)$_2$Te$_3$) have played an essential role in the exploration of topological surface states, allowing us to study phenomena that would otherwise be obscured by bulk contributions to conductivi
We report spin- and angle-resolved photoemission studies of a topological insulator from the infinitely adaptive series between elemental Bi and Bi$_2$Se$_3$. The compound, based on Bi$_4$Se$_3$, is a 1:1 natural superlattice of alternating Bi$_2$ la
We report molecular beam epitaxy growth of Sr-doped Bi$_2$Se$_3$ films on (111) BaF$_2$ substrate, aimed to realize unusual superconducting properties inherent to Sr$_x$Bi$_2$Se$_3$ single crystals. Despite wide range of the compositions, we do not a
Due to high density of native defects, the prototypical topological insulator (TI), Bi$_2$Se$_3$, is naturally n-type. Although Bi$_2$Se$_3$ can be converted into p-type by substituting 2+ ions for Bi, only light elements such as Ca have been so far