ترغب بنشر مسار تعليمي؟ اضغط هنا

Stability of low-carrier-density topological-insulator Bi$_2$Se$_3$ thin films and effect of capping layers

75   0   0.0 ( 0 )
 نشر من قبل Maryam Salehi
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Although over the past number of years there have been many advances in the materials aspects of topological insulators (TI), one of the ongoing challenges with these materials is the protection of them against aging. In particular, the recent development of low-carrier-density bulk-insulating Bi$_2$Se$_3$ thin films and their sensitivity to air demands reliable capping layers to stabilize their electronic properties. Here, we study the stability of the low-carrier-density Bi$_2$Se$_3$ thin films in air with and without various capping layers using DC and THz probes. Without any capping layers, the carrier density increases by ~150% over a week and by ~280% over 9 months. In situ-deposited Se and ex situ-deposited Poly(methyl methacrylate) (PMMA) suppresses the aging effect to ~27% and ~88% respectively over 9 months. The combination of effective capping layers and low-carrier-density TI films will open up new opportunities in topological insulators.

قيم البحث

اقرأ أيضاً

107 - Prosper Ngabonziza , Yi Wang , 2018
An important challenge in the field of topological materials is to carefully disentangle the electronic transport contribution of the topological surface states from that of the bulk. For Bi$_2$Te$_3$ topological insulator samples, bulk single crysta ls and thin films exposed to air during fabrication processes are known to be bulk conducting, with the chemical potential in the bulk conduction band. For Bi$_2$Te$_3$ thin films grown by molecular beam epitaxy, we combine structural characterization (transmission electron microscopy), chemical surface analysis as function of time (x-ray photoelectron spectroscopy) and magnetotransport analysis to understand the low defect density and record high bulk electron mobility once charge is doped into the bulk by surface degradation. Carrier densities and electronic mobilities extracted from the Hall effect and the quantum oscillations are consistent and reveal a large bulk carrier mobility. Because of the cylindrical shape of the bulk Fermi surface, the angle dependence of the bulk magnetoresistance oscillations is two-dimensional in nature.
Alloys of Bi$_2$Te$_3$ and Sb$_2$Te$_3$ ((Bi$_{1-x}$Sb$_x$)$_2$Te$_3$) have played an essential role in the exploration of topological surface states, allowing us to study phenomena that would otherwise be obscured by bulk contributions to conductivi ty. Thin films of these alloys have been particularly important for tuning the energy of the Fermi level, a key step in observing spin-polarized surface currents and the quantum anomalous Hall effect. Previous studies reported the chemical tuning of the Fermi level to the Dirac point by controlling the Sb:Bi composition ratio, but the optimum ratio varies widely across various studies with no consensus. In this work, we use scanning tunneling microscopy and Landau level spectroscopy, in combination with X-ray photoemission spectroscopy to isolate the effects of growth factors such as temperature and composition, and to provide a microscopic picture of the role that disorder and composition play in determining the carrier density of epitaxially grown (Bi,Sb)$_2$Te$_3$ thin films. Using Landau level spectroscopy, we determine that the ideal Sb concentration to place the Fermi energy to within a few meV of the Dirac point is $xsim 0.7$. However, we find that the post- growth annealing temperature can have a drastic impact on microscopic structure as well as carrier density. In particular, we find that when films are post-growth annealed at high temperature, better crystallinity and surface roughness are achieved; but this also produces a larger Te defect density, adding n-type carriers. This work provides key information necessary for optimizing thin film quality in this fundamentally and technologically important class of materials.
We report spin- and angle-resolved photoemission studies of a topological insulator from the infinitely adaptive series between elemental Bi and Bi$_2$Se$_3$. The compound, based on Bi$_4$Se$_3$, is a 1:1 natural superlattice of alternating Bi$_2$ la yers and Bi$_2$Se$_3$ layers; the inclusion of S allows the growth of large crystals, with the formula Bi$_4$Se$_{2.6}$S$_{0.4}$. The crystals cleave along the interfaces between the Bi$_2$ and Bi$_2$Se$_3$ layers, with the surfaces obtained having alternating Bi or Se termination. The resulting terraces, observed by photoemission electron microscopy, create avenues suitable for the study of one-dimensional topological physics. The electronic structure, determined by spin- and angle- resolved photoemission spectroscopy, shows the existence of a surface state that forms a large, hexagonally shaped Fermi surface around the $Gamma$ point of the surface Brillouin zone, with the spin structure indicating that this material is a topological insulator.
We report molecular beam epitaxy growth of Sr-doped Bi$_2$Se$_3$ films on (111) BaF$_2$ substrate, aimed to realize unusual superconducting properties inherent to Sr$_x$Bi$_2$Se$_3$ single crystals. Despite wide range of the compositions, we do not a chieve superconductivity. To explore the reason for that we study structural, morphological and electronic properties of the films and compare them to the corresponding properties of the single crystals. The dependence of the c-lattice constant in the films on Sr content appears to be more than an order of magnitude stronger than in the crystals. Correspondingly, all other properties also differ substantially, indicating that Sr atoms get different positions in lattices. We argue that these structural discrepancies come from essential differences in growth conditions. Our research calls for more detailed structural studies and novel growth approaches for design of superconducting Sr$_x$Bi$_2$Se$_3$ thin films.
Due to high density of native defects, the prototypical topological insulator (TI), Bi$_2$Se$_3$, is naturally n-type. Although Bi$_2$Se$_3$ can be converted into p-type by substituting 2+ ions for Bi, only light elements such as Ca have been so far effective as the compensation dopant. Considering that strong spin-orbit coupling (SOC) is essential for the topological surface states, a light element is undesirable as a dopant, because it weakens the strength of SOC. In this sense, Pb, which is the heaviest 2+ ion, located right next to Bi in the periodic table, is the most ideal p-type dopant for Bi$_2$Se$_3$. However, Pb-doping has so far failed to achieve p-type Bi$_2$Se$_3$ not only in thin films but also in bulk crystals. Here, by utilizing an interface engineering scheme, we have achieved the first Pb-doped p-type Bi$_2$Se$_3$ thin films. Furthermore, at heavy Pb-doping, the mobility turns out to be substantially higher than that of Ca-doped samples, indicating that Pb is a less disruptive dopant than Ca. With this SOC-preserving counter-doping scheme, it is now possible to fabricate Bi$_2$Se$_3$ samples with tunable Fermi levels without compromising their topological properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا