ﻻ يوجد ملخص باللغة العربية
Because of the bulk gap, low energy physics in the quantum Hall effect is confined to the edges of the 2D electron liquid. The velocities of edge modes are key parameters of edge physics. They were determined in several quantum Hall systems from time-resolved measurements and high-frequency ac transport. We propose a way to extract edge velocities from dc transport in a point contact geometry defined by narrow gates. The width of the gates assumes two different sizes at small and large distances from the point contact. The Coulomb interaction across the gates depends on the gate width and affects the conductance of the contact. The conductance exhibits two different temperature dependencies at high and low temperatures. The transition between the two regimes is determined by the edge velocity. An interesting feature of the low-temperature I-V curve is current oscillations as a function of the voltage. The oscillations emerge due to charge reflection from the interface of the regions defined by the narrow and wide sections of the gates.
An antiphased magnetoplasma (MP) mode in a two-dimensional electron gas (2DEG) has been studied by means of inelastic light scattering (ILS) spectroscopy. Unlike the cophased MP mode it is purely quantum excitation which has no classic plasma analogu
The electronic excitations at the edges of a Hall bar not much wider than a few magnetic lengths are studied theoretically at filling $ u = 2$. Both mean-field theory and Luttinger liquid theory techniques are employed for the case of a null Zeeman e
Electron correlation and topology are two central threads of modern condensed matter physics. Semiconductor moire materials provide a highly tunable platform for studies of electron correlation. Correlation-driven phenomena, including the Mott insula
Protected edge modes are the cornerstone of topological states of matter. The simplest example is provided by the integer quantum Hall state at Landau level filling unity, which should feature a single chiral mode carrying electronic excitations. In
The dichotomy between fermions and bosons is at the root of many physical phenomena, from metallic conduction of electricity to super-fluidity, and from the periodic table to coherent propagation of light. The dichotomy originates from the symmetry o