ﻻ يوجد ملخص باللغة العربية
We present the largest survey of spectrally resolved mid-infrared water emission to date, with spectra for 11 disks obtained with the Michelle and TEXES spectrographs on Gemini North. Water emission is detected in 6 of 8 disks around classical T Tauri stars. Water emission is not detected in the transitional disks SR 24 N and SR 24 S, in spite of SR 24 S having pre-transitional disk properties like DoAr 44, which does show water emission (Salyk et al. 2015). With R~100,000, the TEXES water spectra have the highest spectral resolution possible at this time, and allow for detailed lineshape analysis. We find that the mid-IR water emission lines are similar to the narrow component in CO rovibrational emission (Banzatti & Pontoppidan 2015), consistent with disk radii of a few AU. The emission lines are either single peaked, or consistent with a double peak. Single-peaked emission lines cannot be produced with a Keplerian disk model, and may suggest that water participates in the disk winds proposed to explain single-peaked CO emission lines (Bast et al. 2011, Pontoppidan et al. 2011). Double-peaked emission lines can be used to determine the radius at which the line emission luminosity drops off. For HL Tau, the lower limit on this measured dropoff radius is consistent with the 13 AU dark ring (ALMA partnership et al. 2015). We also report variable line/continuum ratios from the disks around DR Tau and RW Aur, which we attribute to continuum changes and line flux changes, respectively. The reduction in RW Aur line flux corresponds with an observed dimming at visible wavelengths (Rodriguez et al. 2013).
We present a Spitzer InfraRed Spectrometer search for 10-36 micron molecular emission from a large sample of protoplanetary disks, including lines from H2O, OH, C2H2, HCN and CO2. This paper describes the sample and data processing and derives the de
We present an analysis of Spitzer-IRS observations of H2O, OH, HCN, C2H2, and CO2 emission, and Keck-NIRSPEC observations of CO emission, from a diverse sample of T Tauri and Herbig Ae/Be circumstellar disks. We find that detections and strengths of
We present high resolution spectroscopy of mid-infrared molecular emission from two very active T Tauri stars, AS 205 N and DR Tau. In addition to measuring high signal-to-noise line profiles of water, we report the first spectrally resolved mid-infr
The mass of a protoplanetary disk limits the formation and future growth of any planet. Masses of protoplanetary disks are usually calculated from measurements of the dust continuum emission by assuming an interstellar gas-to-dust ratio. To investiga
We observed the Herbig Ae/Be stars UX Ori, HD 34282, HD 100453, HD 101412, HD 104237 and HD 142666, and the T Tauri star HD 319139 and searched for H2 0-0 S(2) emission at 12.278 micron and H2 0-0 S(1) emission at 17.035 micron with VISIR, ESO-VLTs h