ﻻ يوجد ملخص باللغة العربية
Focusing on isotropic elastic networks we propose a novel simple-average expression $G(t) = mu_A - h(t)$ for the computational determination of the shear-stress relaxation modulus $G(t)$ of a classical elastic solid or fluid and its equilibrium modulus $G_{eq} = lim_{t to infty} G(t)$. Here, $mu_A = G(0)$ characterizes the shear transformation of the system at $t=0$ and $h(t)$ the (rescaled) mean-square displacement of the instantaneous shear stress $hat{tau}(t)$ as a function of time $t$. While investigating sampling time effects we also discuss the related expressions in terms of shear-stress autocorrelation functions. We argue finally that our key relation may be readily adapted for more general linear response functions.
The shear stress relaxation modulus $G(t)$ may be determined from the shear stress $tau(t)$ after switching on a tiny step strain $gamma$ or by inverse Fourier transformation of the storage modulus $G^{prime}(omega)$ or the loss modulus $G^{primeprim
We revisit the relation between the shear stress relaxation modulus $G(t)$, computed at finite shear strain $0 < gamma ll 1$, and the shear stress autocorrelation functions $C(t)|_{gamma}$ and $C(t)|_{tau}$ computed, respectively, at imposed strain $
Using molecular dynamics simulation of a standard coarse-grained polymer glass model we investigate by means of the stress-fluctuation formalism the shear modulus $mu$ as a function of temperature $T$ and sampling time $Delta t$. While the ensemble-a
We investigate by means of molecular dynamics simulation a coarse-grained polymer glass model focusing on (quasi-static and dynamical) shear-stress fluctuations as a function of temperature T and sampling time $Delta t$. The linear response is charac
We study a simple lattice model of shear-induced clustering in two dimensions in which clusters of particles aggregate under an imposed shear flow and fragment stochastically. Two non-equilibrium steady states are identified: an unjammed state and a