ﻻ يوجد ملخص باللغة العربية
We analyze numerically the performance of the near-optimal quadratic dynamical decoupling (QDD) single-qubit decoherence errors suppression method [J. West et al., Phys. Rev. Lett. 104, 130501 (2010)]. The QDD sequence is formed by nesting two optimal Uhrig dynamical decoupling sequences for two orthogonal axes, comprising N1 and N2 pulses, respectively. Varying these numbers, we study the decoherence suppression properties of QDD directly by isolating the errors associated with each system basis operator present in the system-bath interaction Hamiltonian. Each individual error scales with the lowest order of the Dyson series, therefore immediately yielding the order of decoherence suppression. We show that the error suppression properties of QDD are dependent upon the parities of N1 and N2, and near-optimal performance is achieved for general single-qubit interactions when N1=N2.
We show how dynamical decoupling (DD) and quantum error correction (QEC) can be optimally combined in the setting of fault tolerant quantum computing. To this end we identify the optimal generator set of DD sequences designed to protect quantum infor
Quantum information requires protection from the adverse affects of decoherence and noise. This review provides an introduction to the theory of decoherence-free subspaces, noiseless subsystems, and dynamical decoupling. It addresses quantum information preservation as well protected computation.
Ensembles of dopants have widespread applications in quantum technology. The miniaturization of corresponding devices is however hampered by dipolar interactions that reduce the coherence at increased dopant density. We theoretically and experimental
Nested Uhrig dynamical decoupling (NUDD) is a highly efficient quantum error suppression scheme that builds on optimized single axis UDD sequences. We prove the universality of NUDD and analyze its suppression of different error types in the setting
Currently available superconducting quantum processors with interconnected transmon qubits are noisy and prone to various errors. The errors can be attributed to sources such as open quantum system effects and spurious inter-qubit couplings (crosstal