ﻻ يوجد ملخص باللغة العربية
Recent experimental and theoretical ideas are laying the ground for a new era in the knowledge of the parton structure of nuclei. We report on two promising directions beyond inclusive deep inelastic scattering experiments, aimed at, among other goals, unveiling the three dimensional structure of the bound nucleon. The 3D structure in coordinate space can be accessed through deep exclusive processes, whose non-perturbative content is parametrized in terms of generalized parton distributions. In this way the distribution of partons in the transverse plane will be obtained, providing a pictorial view of the realization of the European Muon Collaboration effect. In particular, we show how, through the generalized parton distribution framework, non nucleonic degrees of freedom in nuclei can be unveiled. Analogously, the momentum space 3D structure can be accessed by studying transverse momentum dependent parton distributions in semi-inclusive deep inelastic scattering processes. The status of measurements is also summarized, in particular novel coincidence measurements at high luminosity facilities, such as Jefferson Laboratory. Finally the prospects for the next years at future facilities, such as the 12~GeV Jefferson Laboratory and the Electron Ion Collider, are presented.
We review our theoretical approach to neutral current photon emission on nucleons and nuclei in the few-GeV energy region, relevant for neutrino oscillation experiments. These reactions are dominated by the weak excitation of the $Delta(1232)$ resona
Structure functions, as measured in lepton-nucleon scattering, have proven to be very useful in studying the quark dynamics within the nucleon. However, it is experimentally difficult to separately determine the longitudinal and transverse structure
The prospects of extracting new physics signals in a coherent elastic neutrino-nucleus scattering (CE$ u$NS) process are limited by the precision with which the underlying nuclear structure physics, embedded in the weak nuclear form factor, is known.
The quantitative knowledge of heavy nucleis partonic structure is currently limited to rather large values of momentum fraction $x$ -- robust experimental constraints below $x sim 10^{-2}$ at low resolution scale $Q^2$ are particularly scarce. This i
Transverse momentum distributions and generalized parton distributions provide a comprehensive framework for the three-dimensional imaging of the nucleon and the nucleus experimentally using deeply virtual semi-exclusive and exclusive processes. The