ترغب بنشر مسار تعليمي؟ اضغط هنا

Assessing Measures of Atrial Fibrillation Clustering via Stochastic Models of Episode Recurrence and Disease Progression

121   0   0.0 ( 0 )
 نشر من قبل Tobias Galla
 تاريخ النشر 2015
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Atrial fibrillation (AF) is a leading cause of morbidity and mortality. AF prevalence increases with age, which is attributed to pathophysiological changes that aid AF initiation and perpetuation. Current state-of-the-art models are only capable of simulating short periods of atrial activity at high spatial resolution, whilst the majority of clinical recordings are based on infrequent temporal datasets of limited spatial resolution. Being able to estimate disease progression informed by both modelling and clinical data would be of significant interest. In addition an analysis of the temporal distribution of recorded fibrillation episodes AF density can provide insights into recurrence patterns. We present an initial analysis of the AF density measure using a simplified idealised stochastic model of a binary time series representing AF episodes. The future aim of this work is to develop robust clinical measures of progression which will be tested on models that generate long-term synthetic data. These measures would then be of clinical interest in deciding treatment strategies.



قيم البحث

اقرأ أيضاً

Mathematical models of cardiac electrical excitation are increasingly complex, with multiscale models seeking to represent and bridge physiological behaviours across temporal and spatial scales. The increasing complexity of these models makes it comp utationally expensive to both evaluate long term (>60 seconds) behaviour and determine sensitivity of model outputs to inputs. This is particularly relevant in models of atrial fibrillation (AF), where individual episodes last from seconds to days, and inter-episode waiting times can be minutes to months. Potential mechanisms of transition between sinus rhythm and AF have been identified but are not well understood, and it is difficult to simulate AF for long periods of time using state-of-the-art models. In this study, we implemented a Moe-type cellular automaton on a novel, topologically correct surface geometry of the left atrium. We used the model to simulate stochastic initiation and spontaneous termination of AF, arising from bursts of spontaneous activation near pulmonary veins. The simplified representation of atrial electrical activity reduced computational cost, and so permitted us to investigate AF mechanisms in a probabilistic setting. We computed large numbers (~10^5) of sample paths of the model, to infer stochastic initiation and termination rates of AF episodes using different model parameters. By generating statistical distributions of model outputs, we demonstrated how to propagate uncertainties of inputs within our microscopic level model up to a macroscopic level. Lastly, we investigated spontaneous termination in the model and found a complex dependence on its past AF trajectory, the mechanism of which merits future investigation.
Tumour progression has been described as a sequence of traits or phenotypes that cells have to acquire if the neoplasm is to become an invasive and malignant cancer. Although the genetic mutations that lead to these phenotypes are random, the process by which some of these mutations become successful and spread is influenced by the tumour microenvironment and the presence of other phenotypes. It is thus likely that some phenotypes that are essential in tumour progression will emerge in the tumour population only with the prior presence of other different phenotypes. In this paper we use evolutionary game theory to analyse the interactions between three different tumour cell phenotypes defined by autonomous growth, anaerobic glycolysis, and cancer cell invasion. The model allows to understand certain specific aspects of glioma progression such as the emergence of diffuse tumour cell invasion in low-grade tumours. We find that the invasive phenotype is more likely to evolve after the appearance of the glycolytic phenotype which would explain the ubiquitous presence of invasive growth in malignant tumours. The result suggests that therapies which increase the fitness cost of switching to anaerobic glycolysis might decrease the probability of the emergence of more invasive phenotypes
A small but growing number of people are finding interesting parallels between ecosystems as studied by ecologists (think of a Savanna or the Amazon rain forest or a Coral reef) and tumours1-3. The idea of viewing cancer from an ecological perspectiv e has many implications but fundamentally, it means that we should not see cancer just as a group of mutated cells. A more useful definition of cancer is to consider it a disruption in the complex balance of many interacting cellular and microenvironmental elements in a specific organ. This perspective means that organs undergoing carcinogenesis should be seen as sophisticated ecosystems in homeostasis that cancer cells can disrupt. It also makes cancer seem even more complex but may ultimately provides isights that make it more treatable. Here we discuss how ecological principles can be used to better understand cancer progression and treatment, using several mathematical and computational models to illustrate our argument.
An example of phase transition in natural complex systems is the qualitative and sudden change in the heart rhythm between sinus rhythm and atrial fibrillation (AF), the most common irregular heart rhythm in humans. While the system behavior is centr ally controlled by the behavior of the sinoatrial node in sinus rhythm, the macro-scale collective behavior of the heart causes the micro-scale behavior in AF. To quantitatively analyze this causation shift associated with phase transition in human heart, we evaluated the causal architecture of the human cardiac system using the time series of multi-lead intracardiac unipolar electrograms in a series of spatiotemporal scales by generating a stochastic renormalization group. We found that the phase transition between sinus rhythm and AF is associated with a significant shift of the peak causation from macroscopic to microscopic scales. Causal architecture analysis may improve our understanding of causality in phase transitions in other natural and social complex systems.
101 - Razvan V. Marinescu 2020
In order to find effective treatments for Alzheimers disease (AD), we need to identify subjects at risk of AD as early as possible. To this end, recently developed disease progression models can be used to perform early diagnosis, as well as predict the subjects disease stages and future evolution. However, these models have not yet been applied to rare neurodegenerative diseases, are not suitable to understand the complex dynamics of biomarkers, work only on large multimodal datasets, and their predictive performance has not been objectively validated. In this work I developed novel models of disease progression and applied them to estimate the progression of Alzheimers disease and Posterior Cortical atrophy, a rare neurodegenerative syndrome causing visual deficits. My first contribution is a study on the progression of Posterior Cortical Atrophy, using models already developed: the Event-based Model (EBM) and the Differential Equation Model (DEM). My second contribution is the development of DIVE, a novel spatio-temporal model of disease progression that estimates fine-grained spatial patterns of pathology, potentially enabling us to understand complex disease mechanisms relating to pathology propagation along brain networks. My third contribution is the development of Disease Knowledge Transfer (DKT), a novel disease progression model that estimates the multimodal progression of rare neurodegenerative diseases from limited, unimodal datasets, by transferring information from larger, multimodal datasets of typical neurodegenerative diseases. My fourth contribution is the development of novel extensions for the EBM and the DEM, and the development of novel measures for performance evaluation of such models. My last contribution is the organization of the TADPOLE challenge, a competition which aims to identify algorithms and features that best predict the evolution of AD.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا