ترغب بنشر مسار تعليمي؟ اضغط هنا

Minimal model of active colloids highlights the role of mechanical interactions in controlling the emergent behavior of active matter

61   0   0.0 ( 0 )
 نشر من قبل David Yllanes
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Minimal models of active Brownian colloids consisting of self-propelled spherical particles with purely repulsive interactions have recently been identified as excellent quantitative testing grounds for theories of active matter and have been the subject of extensive numerical and analytical investigation. These systems do not exhibit aligned or flocking states, but do have a rich phase diagram, forming active gases, liquids and solids with novel mechanical properties. This article reviews recent advances in the understanding of such models, including the description of the active gas and its swim pressure, the motility-induced phase separation and the high-density crystalline and glassy behavior.

قيم البحث

اقرأ أيضاً

89 - B. Liebchen , H. Lowen 2018
Despite a mounting evidence that the same gradients which active colloids use for swimming, induce important cross-interactions (phoretic interaction), they are still ignored in most many-body descriptions, perhaps to avoid complexity and a zoo of un known parameters. Here we derive a simple model, which reduces phoretic far-field interactions to a pair-interaction whose strength is mainly controlled by one genuine parameter (swimming speed). The model suggests that phoretic interactions are generically important for autophoretic colloids (unless effective screening of the phoretic fields is strong) and should dominate over hydrodynamic interactions for the typical case of half-coating and moderately nonuniform surface mobilities. Unlike standard minimal models, but in accordance with canonical experiments, our model generically predicts dynamic clustering in active colloids at low density. This suggests that dynamic clustering can emerge from the interplay of screened phoretic attractions and active diffusion.
Polar active particles constitute a wide class of synthetic colloids that are able to propel along a preferential direction, given by their polar axis. Here, we demonstrate a generic self-phoretic mechanism that leads to their spontaneous chiralizati on through a symmetry breaking instability. We find that the transition of an active particle from a polar to a chiral symmetry is characterized by the emergence of active rotation and of circular trajectories. We show that the instability is driven by the advection of a solute that interacts differently with the two portions of the particle surface and it occurs through a supercritical pitchfork bifurcation.
Self-propelled phoretic colloids have recently emerged as a promising avenue for the design of artificial swimmers. These swimmers combine purely phoretic interactions with intricate hydrodynamics which critically depend on the swimmer shape. Thermop hobic dimer shaped colloids are here investigated by means of hydrodynamic simulations, from the single particle motion to their collective behavior. The combination of phoretic repulsion with hydrodynamic lateral attraction favors the formation of planar moving clusters. The resulting hydrodynamic assembly in flattened swarms is therefore very specific to these dimeric active colloids.
We study a model of an active gel of cross-linked semiflexible filaments with additional active linkers such as myosin II clusters. We show that the coupling of the elasticity of the semiflexible filaments to the mechanical properties of the motors l eads to contractile behavior of the gel, in qualitative agreement with experimental observations. The motors, however, soften the zero frequency elastic constant of the gel. When the collective motor dynamics is incorporated in the model, a stiffening of the network at high frequencies is obtained. The frequency controlling the crossover between low and high frequency network elasticity is estimated in terms of microscopic properties of motors and filaments, and can be as low as 10^(-3)Hz.
By employing monomer-resolved computer simulations and analytical considerations based on polymer scaling theory, we analyze the conformations and interactions of multiarm star polymers strongly adsorbed on a smooth, two-dimensional plane. We find a stronger stretching of the arms as well as a stronger repulsive, effective interaction than in the three dimensional case. In particular, the star size scales with the number of arms $f$ as $sim f^{1/4}$ and the effective interaction as $sim f^{2}$, as opposed to $sim f^{1/5}$ and $sim f^{3/2}$, respectively, in three dimensions. Our results demonstrate the dramatic effect that geometric confinement can have on the effective interactions and the subsequent correlations of soft colloids in general, for which the conformation can be altered as a result of geometrical constraints imposed on them.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا