ﻻ يوجد ملخص باللغة العربية
We study a model of an active gel of cross-linked semiflexible filaments with additional active linkers such as myosin II clusters. We show that the coupling of the elasticity of the semiflexible filaments to the mechanical properties of the motors leads to contractile behavior of the gel, in qualitative agreement with experimental observations. The motors, however, soften the zero frequency elastic constant of the gel. When the collective motor dynamics is incorporated in the model, a stiffening of the network at high frequencies is obtained. The frequency controlling the crossover between low and high frequency network elasticity is estimated in terms of microscopic properties of motors and filaments, and can be as low as 10^(-3)Hz.
Colloids that interact via a short-range attraction serve as the primary building blocks for a broad range of self-assembled materials. However, one of the well-known drawbacks to this strategy is that these building blocks rapidly and readily conden
We present a detailed numerical study of multi-component colloidal gels interacting sterically and obtained by arrested phase separation. Under deformation, we found that the interplay between the different intertwined networks is key. Increasing the
We study numerically the rheological properties of a slab of active gel close o the isotropic-nematic transition. The flow behavior shows strong dependence on sample size, boundary conditions, and on the bulk constitutive curve, which, on entering th
Architectural transformations play a key role in the evolution of complex systems, from design algorithms for metamaterials to flow and plasticity of disordered media. Here, we develop a general framework for the evolution of the linear mechanical re
In this reply we discuss definition and estimation of the Fisher exponent in the no-enclaves percolation (NEP) model.