ترغب بنشر مسار تعليمي؟ اضغط هنا

The simplest 3-3-1 model

115   0   0.0 ( 0 )
 نشر من قبل Duc Ninh Le
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A simple extension of the Standard Model (SM), based on the gauge group $SU(3)_Cotimes SU(3)_Lotimes U(1)_Y$ with $Y$ being the hypercharge, is considered. We show that, by imposing an approximate global $SU(2)_Ltimes SU(2)_R$ custodial symmetry at the SM energy scale, the $Z-Z$ mixing is absent at tree level and the value of the $rho$ parameter can be kept close to one. Tree-level flavor-changing neutral currents are also reduced to three particles, namely $Z$, a CP-odd Higgs and a CP-even Higgs. The model predicts new leptons with electric charges of $pm 1/2e$ and new quarks with $pm 1/6e$ charges as well as new gauge and scalar bosons with $pm 1/2e$ charges. Electric charge conservation requires that one of them must be stable. Their masses are unfortunately free parameters.

قيم البحث

اقرأ أيضاً

We consider the minimal 3-3-1 model with a heavy scalar sextet and realize, at the tree level, an effective dimension-five interaction that contributes to the mass of the charged leptons. In this case the charged leptons masses arise from a sort of t ype-II seesawlike mechanism while the neutrino masses are generated by a type-I mechanism. We also show that the parameters giving the correct lepton masses also accommodate the Pontecorvo-Maki-Nakawaga-Sakata matrix. We give the scalar mass spectra of the model and analyze under which conditions the fields in the scalar sextet are heavy even with small or zero vacuum expectation values. We also show the conditions under which it is possible to have a stable (bounded from below) potential and also a global minimum.
We show that the economical 3-3-1 model poses a very high new physics scale of the order of 1000~TeV due to the constraint on the flavor-changing neutral current. The implications of the model for neutrino masses, inflation, leptogenesis, and superhe avy dark matter are newly recognized. Alternatively, we modify the model by rearranging the third quark generation differently from the first two quark generations, as well as changing the scalar sector. The resultant model now predicts a consistent new physics at TeV scale unlike the previous case and may be fully probed at the current colliders. Particularly, due to the minimal particle contents, the models under consideration manifestly accommodate dark matter candidates and neutrino masses, with novel and distinct production mechanisms. The large flavor-changing neutral currents that come from the ordinary and exotic quark mixings can be avoided due to the approximate $B-L$ symmetry.
62 - P. V. Dong , D. T. Si 2015
We show that the mixing effect of the neutral gauge bosons in the 3-3-1-1 model comes from two sources. The first one is due to the 3-3-1-1 gauge symmetry breaking as usual, whereas the second one results from the kinetic mixing between the gauge bos ons of U(1)_X and U(1)_N groups, which are used to determine the electric charge and baryon minus lepton numbers, respectively. Such mixings modify the rho-parameter and the known couplings of Z with fermions. The constraints that arise from flavor-changing neutral currents due to the gauge boson mixings and non-universal fermion generations are also given.
We present the features of the fully flipped 3-3-1-1 model and show that this model leads to dark matter candidates naturally. We study two dark matter scenarios corresponding to the triplet fermion and singlet scalar candidates, and we determine the viable parameter regimes constrained from the observed relic density and direct detection experiments.
We construct a 3-3-1 model based on family symmetry S_4 responsible for the neutrino and quark masses. The tribimaximal neutrino mixing and the diagonal quark mixing have been obtained. The new lepton charge mathcal{L} related to the ordinary lepton charge L and a SU(3) charge by L=2/sqrt{3} T_8+mathcal{L} and the lepton parity P_l=(-)^L known as a residual symmetry of L have been introduced which provide insights in this kind of model. The expected vacuum alignments resulting in potential minimization can origin from appropriate violation terms of S_4 and mathcal{L}. The smallness of seesaw contributions can be explained from the existence of such terms too. If P_l is not broken by the vacuum values of the scalar fields, there is no mixing between the exotic and the ordinary quarks at the tree level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا