ﻻ يوجد ملخص باللغة العربية
We construct a 3-3-1 model based on family symmetry S_4 responsible for the neutrino and quark masses. The tribimaximal neutrino mixing and the diagonal quark mixing have been obtained. The new lepton charge mathcal{L} related to the ordinary lepton charge L and a SU(3) charge by L=2/sqrt{3} T_8+mathcal{L} and the lepton parity P_l=(-)^L known as a residual symmetry of L have been introduced which provide insights in this kind of model. The expected vacuum alignments resulting in potential minimization can origin from appropriate violation terms of S_4 and mathcal{L}. The smallness of seesaw contributions can be explained from the existence of such terms too. If P_l is not broken by the vacuum values of the scalar fields, there is no mixing between the exotic and the ordinary quarks at the tree level.
We construct a 3-3-1 model based on non-Abelian discrete symmetry $T_7$ responsible for the fermion masses. Neutrinos get masses from only anti-sextets which are in triplets $underline{3}$ and $underline{3}^*$ under $T_7$. The flavor mixing patterns
We propose two 3-3-1 models (with either neutral fermions or right-handed neutrinos) based on S_3 flavor symmetry responsible for fermion masses and mixings. The models can be distinguished upon the new charge embedding (mathcal{L}) relevant to lepto
We build the first 3-3-1 model based on the $Delta (27)$ discrete group symmetry, consistent with fermion masses and mixings. In the model under consideration, the neutrino masses are generated from a combination of type-I and type-II seesaw mechanis
We construct a $D_4$ flavor model based on SU(3)_C X SU}(3_L X U(1)_X gauge symmetry responsible for fermion masses and mixings. The neutrinos get small masses from antisextets which are in a singlet and a doublet under $D_4$. If the D_4 symmetry is
We propose a E_6 inspired supersymmetric model with a non-Abelian discrete flavor symmetry (S_4 group); that is, SU(3)_c x SU(2)_W x U(1)_Y x U(1)_X x S_4 x Z_2. In our scenario, the additional abelian gauge symmetry; U(1)_X, not only solves the mu-p