ﻻ يوجد ملخص باللغة العربية
We prove a $pre$-$asymptotic$ bound on the total variation distance between the uniform distribution over two types of undirected graphs with $n$ nodes. One distribution places a prescribed number of $k_T$ triangles and $k_S$ edges not involved in a triangle independently and uniformly over all possibilities, and the other is the uniform distribution over simple graphs with exactly $k_T$ triangles and $k_S$ edges not involved in a triangle. As a corollary, for $k_S = o(n)$ and $k_T = o(n)$ as $n$ tends to infinity, the total variation distance tends to $0$, at a rate that is given explicitly. Our main tool is Chen-Stein Poisson approximation, hence our bounds are explicit for all finite values of the parameters.
Let $[mathcal{P}]$ be the points of a Poisson process on $mathbb{R}^d$ and $F$ a probability distribution with support on the non-negative integers. Models are formulated for generating translation invariant random graphs with vertex set $[mathcal{P}
In this work we present a simple and efficient algorithm which, with high probability, provides an almost uniform sample from the set of proper k-colourings on an instance of a sparse random graph G(n,d/n), where k=k(d) is a sufficiently large consta
We study the spectrum of a random multigraph with a degree sequence ${bf D}_n=(D_i)_{i=1}^n$ and average degree $1 ll omega_n ll n$, generated by the configuration model, and also the spectrum of the analogous random simple graph. We show that, when
We study geometric random graphs defined on the points of a Poisson process in $d$-dimensional space, which additionally carry independent random marks. Edges are established at random using the marks of the endpoints and the distance between points
For a real constant $alpha$, let $pi_3^alpha(G)$ be the minimum of twice the number of $K_2$s plus $alpha$ times the number of $K_3$s over all edge decompositions of $G$ into copies of $K_2$ and $K_3$, where $K_r$ denotes the complete graph on $r$ ve