ﻻ يوجد ملخص باللغة العربية
In this work we present a simple and efficient algorithm which, with high probability, provides an almost uniform sample from the set of proper k-colourings on an instance of a sparse random graph G(n,d/n), where k=k(d) is a sufficiently large constant. Our algorithm is not based on the Markov Chain Monte Carlo method (M.C.M.C.). Instead, we provide a novel proof of correctness of our Algorithm that is based on interesting spatial mixing properties of colourings of G(n,d/n). Our result improves upon previous results (based on M.C.M.C.) that required a number of colours growing unboundedly with n.
A lower bound is obtained for the greatest possible number of colors in an interval colourings of some regular graphs.
We prove that the number of Hamilton cycles in the random graph G(n,p) is n!p^n(1+o(1))^n a.a.s., provided that pgeq (ln n+ln ln n+omega(1))/n. Furthermore, we prove the hitting-time version of this statement, showing that in the random graph process
When we try to solve a system of linear equations, we can consider a simple iterative algorithm in which an equation including only one variable is chosen at each step, and the variable is fixed to the value satisfying the equation. The dynamics of t
For complete graphs and n-cubes bounds are found for the possible number of colours in an interval edge colourings.
We prove a $pre$-$asymptotic$ bound on the total variation distance between the uniform distribution over two types of undirected graphs with $n$ nodes. One distribution places a prescribed number of $k_T$ triangles and $k_S$ edges not involved in a