ترغب بنشر مسار تعليمي؟ اضغط هنا

The Peter-Weyl Theorem for SU(1|1)

66   0   0.0 ( 0 )
 نشر من قبل Rita Fioresi
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a generalization of the results in cite{cfk} to the case of $SU(1|1)$ interpreted as the supercircle $S^{1|2}$. We describe all of its finite dimensional complex irreducible representations, we give a reducibility result for representations not containing the trivial character, and we compute explicitly the corresponding matrix elements. In the end we give the Peter-Weyl theorem for $S^{1|2}$.



قيم البحث

اقرأ أيضاً

We show that the Schur-Weyl type duality between $gl(1|1)$ and $GL_n$ gives a natural representation-theoretic setting for the relation between reduced and non-reduced Burau representations.
The classical Peter-Weyl theorem describes the structure of the space of functions on a semi-simple algebraic group. On the level of characters (in type A) this boils down to the Cauchy identity for the products of Schur polynomials. We formulate and prove the analogue of the Peter-Weyl theorem for the current groups. In particular, in type A the corresponding characters identity is governed by the Cauchy identity for the products of q-Whittaker functions. We also formulate and prove a version of the Schur-Weyl theorem for current groups. The link between the Peter-Weyl and Schur-Weyl theorems is provided by the (current version of) Howe duality.
The orthosymplectic super Lie algebra $mathfrak{osp}(1|,2ell)$ is the closest analog of standard Lie algebras in the world of super Lie algebras. We demonstrate that the corresponding $mathfrak{osp}(1|,2ell)$-Toda chain turns out to be an instance of a $BC_ell$-Toda chain. The underlying reason for this relation is discussed.
80 - A. I. Molev 2021
We classify the finite-dimensional irreducible representations of the Yangians associated with the orthosymplectic Lie superalgebras ${frak{osp}}_{1|2n}$ in terms of the Drinfeld polynomials. The arguments rely on the description of the representatio ns in the particular case $n=1$ obtained in our previous work.
141 - Genqiang Liu , Yang Li , Keke Wang 2020
In this paper, we study weight representations over the Schr{o}dinger Lie algebra $mathfrak{s}_n$ for any positive integer $n$. It turns out that the algebra $mathfrak{s}_n$ can be realized by polynomial differential operators. Using this realization , we give a complete classification of irreducible weight $mathfrak{s}_n$-modules with finite dimensional weight spaces for any $n$. All such modules can be clearly characterized by the tensor product of $mathfrak{so}_n$-modules, $mathfrak{sl}_2$-modules and modules over the Weyl algebra.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا