ﻻ يوجد ملخص باللغة العربية
We study a generalization of the results in cite{cfk} to the case of $SU(1|1)$ interpreted as the supercircle $S^{1|2}$. We describe all of its finite dimensional complex irreducible representations, we give a reducibility result for representations not containing the trivial character, and we compute explicitly the corresponding matrix elements. In the end we give the Peter-Weyl theorem for $S^{1|2}$.
We show that the Schur-Weyl type duality between $gl(1|1)$ and $GL_n$ gives a natural representation-theoretic setting for the relation between reduced and non-reduced Burau representations.
The classical Peter-Weyl theorem describes the structure of the space of functions on a semi-simple algebraic group. On the level of characters (in type A) this boils down to the Cauchy identity for the products of Schur polynomials. We formulate and
The orthosymplectic super Lie algebra $mathfrak{osp}(1|,2ell)$ is the closest analog of standard Lie algebras in the world of super Lie algebras. We demonstrate that the corresponding $mathfrak{osp}(1|,2ell)$-Toda chain turns out to be an instance of
We classify the finite-dimensional irreducible representations of the Yangians associated with the orthosymplectic Lie superalgebras ${frak{osp}}_{1|2n}$ in terms of the Drinfeld polynomials. The arguments rely on the description of the representatio
In this paper, we study weight representations over the Schr{o}dinger Lie algebra $mathfrak{s}_n$ for any positive integer $n$. It turns out that the algebra $mathfrak{s}_n$ can be realized by polynomial differential operators. Using this realization