ترغب بنشر مسار تعليمي؟ اضغط هنا

New type of hill-top inflation

67   0   0.0 ( 0 )
 نشر من قبل Andrei Barvinsky
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We suggest a new type of hill-top inflation originating from the initial conditions in the form of the microcanonical density matrix for the cosmological model with a large number of quantum fields conformally coupled to gravity. Initial conditions for inflation are set up by cosmological instantons describing underbarrier oscillations in the vicinity of the inflaton potential maximum. These periodic oscillations of the inflaton field and cosmological scale factor are obtained within the approximation of two coupled oscillators subject to the slow roll regime in the Euclidean time. This regime is characterized by rapid oscillations of the scale factor on the background of a slowly varying inflaton, which guarantees smallness of slow roll parameters $epsilon$ and $eta$ of the following inflation stage. A hill-like shape of the inflaton potential is shown to be generated by logarithmic loop corrections to the tree-level asymptotically shift-invariant potential in the non-minimal Higgs inflation model and $R^2$-gravity. The solution to the problem of hierarchy between the Planckian scale and the inflation scale is discussed within the concept of conformal higher spin fields, which also suggests the mechanism bringing the model below the gravitational cutoff and, thus, protecting it from large graviton loop corrections.



قيم البحث

اقرأ أيضاً

In the first part of this talk, a short overview of the ongoing debate on the existence of de Sitter vacua in string theory is presented. In the second part, the moduli stabilisation and inflation are discussed in the context of type IIB/F-theory. Co nsidering a configuration of three intersecting $D7$ branes with fluxes, it is shown that higher loop effects inducing logarithmic corrections to the Kahler potential can stabilise the Kahler moduli in a de Sitter Vacuum. When a new Fayet-Iliopoulos term is included, it is also possible to generate the required number of e-foldings and satisfy the conditions for slow-roll inflation.
We show that one can reduce the coupled system of seven field equations of the (3+1)-dimensional gauged Skyrme model to the Heun equation (which, for suitable choices of the parameters, can be further reduced to the Whittaker-Hill equation) in two no n-trivial topological sectors. Hence, one can get a complete analytic description of gauged solitons in (3+1) dimensions living within a finite volume in terms of classic results in the theory of differential equations and Kummers con uent functions. We consider here two types of gauged solitons: gauged Skyrmions and gauged time-crystals (namely, gauged solitons periodic in time, whose time-period is protected by a winding number). The dependence of the energy of the gauged Skyrmions on the Baryon charge can be determined explicitly. The theory of Kummers confluent functions leads to a quantization condition for the period of the time-crystals. Likewise, the theory of Sturm-Liouville operators gives rise to a quantization condition for the volume occupied by the gauged Skyrmions. The present analysis also discloses that resurgent techniques are very well suited to deal with the gauged Skyrme model as well. In particular, we discuss a very nice relation between the electromagnetic perturbations of the gauged Skyrmions and the Mathieu equation which allows to use many of the modern resurgence techniques to determine the behavior of the spectrum of these perturbations.
We argue that moduli stabilization generically restricts the evolution following transitions between weakly coupled de Sitter vacua and can induce a strong selection bias towards inflationary cosmologies. The energy density of domain walls between va cua typically destabilizes Kahler moduli and triggers a runaway towards large volume. This decompactification phase can collapse the new de Sitter region unless a minimum amount of inflation occurs after the transition. A stable vacuum transition is guaranteed only if the inflationary expansion generates overlapping past light cones for all observable modes originating from the reheating surface, which leads to an approximately flat and isotropic universe. High scale inflation is vastly favored. Our results point towards a framework for studying parameter fine-tuning and inflationary initial conditions in flux compactifications.
270 - Chong-Bin Chen , Jiro Soda 2021
Hyperbolic inflation is an extension of the slow-roll inflation in multi-field models. We extend hyperbolic inflation by adding a gauge field and find four-type attractor solutions: slow-roll inflation, hyperbolic inflation, anisotropic slow roll inf lation, and anisotropic hyperbolic inflation. We perform the stability analysis with the dynamical system method. We also study the transition behaviors of solutions between anisotropic slow roll inflation and anisotropic hyperbolic inflation. Our result indicates that destabilization of the standard slow-roll inflation ubiquitously occurs in multi-scalar-gauge field inflationary scenarios.
143 - I-Sheng Yang 2012
Slowroll after tunneling is a crucial step in one popular framework of the multiverse---false vacuum eternal inflation (FVEI). In a landscape with a large number of fields, we provide a heuristic estimation for its probability. We find that the chanc e to slowroll is exponentially suppressed, where the exponent comes from the number of fields. However, the relative probability to have more e-foldings is only mildly suppressed as $N_e^{-alpha} $ with $alphasim3$. Base on these two properties, we show that the FVEI picture is still self-consistent and may have a strong preference between different slowroll models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا