ﻻ يوجد ملخص باللغة العربية
The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) and Cluster Lensing And Supernova survey with Hubble (CLASH) multi-cycle treasury programs with the Hubble Space Telescope (HST) have provided new opportunities to probe the rate of core-collapse supernovae (CCSNe) at high redshift, now extending to $zapprox2.5$. Here we use a sample of approximately 44 CCSNe to determine volumetric rates, $R_{CC}$, in six redshift bins in the range $0.1<z<2.5$. Together with rates from our previous HST program, and rates from the literature, we trace a more complete history of $R_{CC}(z)$, with $R_{CC}=0.72pm0.06$ yr$^{-1}$ Mpc$^{-3}$ 10$^{-4}$ $h_{70}^{3}$ at $z<0.08$, and increasing to $3.7^{+3.1}_{-1.6}$ yr$^{-1}$ Mpc$^{-3}$ 10$^{-4}$ $h_{70}^{3}$ to $zapprox2.0$. The statistical precision in each bin is several factors better than than the systematic error, with significant contributions from host extinction, and average peak absolute magnitudes of the assumed luminosity functions for CCSN types. Assuming negligible time delays from stellar formation to explosion, we find these composite CCSN rates to be in excellent agreement with cosmic star formation rate density (SFRs) derived largely from dust-corrected rest-frame UV emission, with a scaling factor of $k=0.0091pm0.0017,M^{-1}_{odot}$, and inconsistent (to $>95%$ confidence) with SFRs from IR luminous galaxies, or with SFR models that include simple evolution in the initial mass function over time. This scaling factor is expected if the fraction of the IMF contributing to CCSN progenitors is in the 8 to 50 $M_{odot}$ range. It is not supportive, however, of an upper mass limit for progenitors at $<20,M_{odot}$.
We use the Sloan Digital Sky Survey II Supernova Survey (SDSS-II SNS) data to measure the volumetric core collapse supernova (CCSN) rate in the redshift range (0.03<z<0.09). Using a sample of 89 CCSN we find a volume-averaged rate of (1.06 +/- 0.19)
The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) was a multi-cycle treasury program on the Hubble Space Telescope (HST) that surveyed a total area of ~0.25 deg^2 with ~900 HST orbits spread across 5 fields over 3 years. Wi
We use three years of data from the Supernova Legacy Survey (SNLS) to study the general properties of core-collapse and type Ia supernovae. This is the first such study using the rolling search technique which guarantees well-sampled SNLS light curve
We use a sample of 45 core collapse supernovae detected with the Advanced Camera for Surveys on-board the Hubble Space Telescope to derive the core collapse supernova rate in the redshift range 0.1<z<1.3. In redshift bins centered on <z>=0.39, <z>=0.
We introduce a method for producing a galaxy sample unbiased by surface brightness and stellar mass, by selecting star-forming galaxies via the positions of core-collapse supernovae (CCSNe). Whilst matching $sim$2400 supernovae from the SDSS-II Super