ترغب بنشر مسار تعليمي؟ اضغط هنا

The Rate of Core Collapse Supernovae to Redshift 2.5 From The CANDELS and CLASH Supernova Surveys

133   0   0.0 ( 0 )
 نشر من قبل Louis-Gregory Strolger
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) and Cluster Lensing And Supernova survey with Hubble (CLASH) multi-cycle treasury programs with the Hubble Space Telescope (HST) have provided new opportunities to probe the rate of core-collapse supernovae (CCSNe) at high redshift, now extending to $zapprox2.5$. Here we use a sample of approximately 44 CCSNe to determine volumetric rates, $R_{CC}$, in six redshift bins in the range $0.1<z<2.5$. Together with rates from our previous HST program, and rates from the literature, we trace a more complete history of $R_{CC}(z)$, with $R_{CC}=0.72pm0.06$ yr$^{-1}$ Mpc$^{-3}$ 10$^{-4}$ $h_{70}^{3}$ at $z<0.08$, and increasing to $3.7^{+3.1}_{-1.6}$ yr$^{-1}$ Mpc$^{-3}$ 10$^{-4}$ $h_{70}^{3}$ to $zapprox2.0$. The statistical precision in each bin is several factors better than than the systematic error, with significant contributions from host extinction, and average peak absolute magnitudes of the assumed luminosity functions for CCSN types. Assuming negligible time delays from stellar formation to explosion, we find these composite CCSN rates to be in excellent agreement with cosmic star formation rate density (SFRs) derived largely from dust-corrected rest-frame UV emission, with a scaling factor of $k=0.0091pm0.0017,M^{-1}_{odot}$, and inconsistent (to $>95%$ confidence) with SFRs from IR luminous galaxies, or with SFR models that include simple evolution in the initial mass function over time. This scaling factor is expected if the fraction of the IMF contributing to CCSN progenitors is in the 8 to 50 $M_{odot}$ range. It is not supportive, however, of an upper mass limit for progenitors at $<20,M_{odot}$.



قيم البحث

اقرأ أيضاً

We use the Sloan Digital Sky Survey II Supernova Survey (SDSS-II SNS) data to measure the volumetric core collapse supernova (CCSN) rate in the redshift range (0.03<z<0.09). Using a sample of 89 CCSN we find a volume-averaged rate of (1.06 +/- 0.19) x 10**(-4)/(yr Mpc**3) at a mean redshift of 0.072 +/- 0.009. We measure the CCSN luminosity function from the data and consider the implications on the star formation history.
The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) was a multi-cycle treasury program on the Hubble Space Telescope (HST) that surveyed a total area of ~0.25 deg^2 with ~900 HST orbits spread across 5 fields over 3 years. Wi thin these survey images we discovered 65 supernovae (SN) of all types, out to z~2.5. We classify ~24 of these as Type Ia SN (SN Ia) based on host-galaxy redshifts and SN photometry (supplemented by grism spectroscopy of 6 SN). Here we present a measurement of the volumetric SN Ia rate as a function of redshift, reaching for the first time beyond z=2 and putting new constraints on SN Ia progenitor models. Our highest redshift bin includes detections of SN that exploded when the universe was only ~3 Gyr old and near the peak of the cosmic star-formation history. This gives the CANDELS high-redshift sample unique leverage for evaluating the fraction of SN Ia that explode promptly after formation (<500 Myr). Combining the CANDELS rates with all available SN Ia rate measurements in the literature we find that this prompt SN Ia fraction is fP=0.53 +0.09 -0.10 (stat) +0.10 -0.26 (sys), consistent with a delay time distribution that follows a simple t^{-1} power law for all times t>40 Myr. However, a mild tension is apparent between ground-based low-z surveys and space-based high-z surveys. In both CANDELS and the sister HST program CLASH, we find a low rate of SN Ia at z>1. This could be a hint that prompt progenitors are in fact relatively rare, accounting for only ~20% of all SN Ia explosions -- though further analysis and larger samples will be needed to examine that suggestion.
We use three years of data from the Supernova Legacy Survey (SNLS) to study the general properties of core-collapse and type Ia supernovae. This is the first such study using the rolling search technique which guarantees well-sampled SNLS light curve s and good efficiency for supernovae brighter than $i^primesim24$. Using host photometric redshifts, we measure the supernova absolute magnitude distribution down to luminosities $4.5 {rm mag}$ fainter than normal SNIa. Using spectroscopy and light-curve fitting to discriminate against SNIa, we find a sample of 117 core-collapse supernova candidates with redshifts $z<0.4$ (median redshift of 0.29) and measure their rate to be larger than the type Ia supernova rate by a factor $4.5pm0.8(stat.) pm0.6 (sys.)$. This corresponds to a core-collapse rate at $z=0.3$ of $[1.42pm 0.3(stat.) pm0.3(sys.)]times10^{-4}yr^{-1}(h_{70}^{-1}Mpc)^{-3}$.
We use a sample of 45 core collapse supernovae detected with the Advanced Camera for Surveys on-board the Hubble Space Telescope to derive the core collapse supernova rate in the redshift range 0.1<z<1.3. In redshift bins centered on <z>=0.39, <z>=0. 73, and <z>=1.11, we find rates 3.00 {+1.28}{-0.94}{+1.04}{-0.57}, 7.39 {+1.86}{-1.52}{+3.20}{-1.60}, and 9.57 {+3.76}{-2.80}{+4.96}{-2.80}, respectively, given in units yr^{-1} Mpc^{-3} 10^{-4} h_{70}^3. The rates have been corrected for host galaxy extinction, including supernovae missed in highly dust enshrouded environments in infrared bright galaxies. The first errors represent statistical while the second are the estimated systematic errors. We perform a detailed discussion of possible sources of systematic errors and note that these start to dominate over statistical errors at z>0.5, emphasizing the need to better control the systematic effects. For example, a better understanding of the amount of dust extinction in the host galaxies and knowledge of the supernova luminosity function, in particular the fraction of faint M > -15 supernovae, is needed to better constrain the rates. When comparing our results with the core collapse supernova rate based on the star formation rate, we find a good agreement, consistent with the supernova rate following the star formation rate, as expected.
We introduce a method for producing a galaxy sample unbiased by surface brightness and stellar mass, by selecting star-forming galaxies via the positions of core-collapse supernovae (CCSNe). Whilst matching $sim$2400 supernovae from the SDSS-II Super nova Survey to their host galaxies using IAC Stripe 82 legacy coadded imaging, we find $sim$150 previously unidentified low surface brightness galaxies (LSBGs). Using a sub-sample of $sim$900 CCSNe, we infer CCSN-rate and star-formation rate densities as a function of galaxy stellar mass, and the star-forming galaxy stellar mass function. Resultant star-forming galaxy number densities are found to increase following a power-law down to our low mass limit of $sim10^{6.4}$ M$_{odot}$ by a single Schechter function with a faint-end slope of $alpha = -1.41$. Number densities are consistent with those found by the EAGLE simulations invoking a $Lambda$-CDM cosmology. Overcoming surface brightness and stellar mass biases is important for assessment of the sub-structure problem. In order to estimate galaxy stellar masses, a new code for the calculation of galaxy photometric redshifts, zMedIC, is also presented, and shown to be particularly useful for small samples of galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا