ﻻ يوجد ملخص باللغة العربية
In this work we analyze PT-symmetric double-well potentials based on a two-mode picture. We reduce the problem into a PT-symmetric dimer and illustrate that the latter has effectively two fundamental bifurcations, a pitchfork (symmetry-breaking bifurcation) and a saddle-center one, which is the nonlinear analog of the PT-phase-transition. It is shown that the symmetry breaking leads to ghost states (amounting to growth or decay); although these states are not true solutions of the original continuum problem, the systems dynamics closely follows them, at least in its metastable evolution. Past the second bifurcation, there are no longer states of the original continuum system. Nevertheless, the solutions can be analytically continued to yield a new pair of branches, which is also identified and dynamically examined. Our explicit analytical results for the dimer are directly compared to the full continuum problem, yielding a good agreement.
A Parity-Time (PT)-symmetric system with periodically varying-in-time gain and loss modeled by two coupled Schrodinger equations (dimer) is studied. It is shown that the problem can be reduced to a perturbed pendulum-like equation. This is done by fi
Considering the coherent nonlinear dynamics in double square well potential we find the example of coexistence of Josephson oscillations with a self-trapping regime. This macroscopic bistability is explained by proving analytically the simultaneous e
We investigate dipolar Bose-Einstein condensates in a complex external double-well potential that features a combined parity and time-reversal symmetry. On the basis of the Gross-Pitaevskii equation we study the effects of the long-ranged anisotropic
We construct exact localised solutions of the PT-symmetric Gross-Pitaevskii equation with an attractive cubic nonlinearity. The trapping potential has the form of two $delta$-function wells, where one well loses particles while the other one is fed w
One-dimensional PT-symmetric quantum-mechanical Hamiltonians having continuous spectra are studied. The Hamiltonians considered have the form $H=p^2+V(x)$, where $V(x)$ is odd in $x$, pure imaginary, and vanishes as $|x|toinfty$. Five PT-symmetric po