ﻻ يوجد ملخص باللغة العربية
In the statistical inference for long range dependent time series the shape of the limit distribution typically depends on unknown parameters. Therefore, we propose to use subsampling. We show the validity of subsampling for general statistics and long range dependent subordinated Gaussian processes which satisfy mild regularity conditions. We apply our method to a self-normalized change-point test statistic so that we can test for structural breaks in long range dependent time series without having to estimate any nuisance parameter. The finite sample properties are investigated in a simulation study. We analyze three data sets and compare our results to the conclusions of other authors.
Many popular robust estimators are $U$-quantiles, most notably the Hodges-Lehmann location estimator and the $Q_n$ scale estimator. We prove a functional central limit theorem for the sequential $U$-quantile process without any moment assumptions and
We consider a high-dimensional regression model with a possible change-point due to a covariate threshold and develop the Lasso estimator of regression coefficients as well as the threshold parameter. Our Lasso estimator not only selects covariates b
The purpose of this note is to provide an approximation for the generalized bootstrapped empirical process achieving the rate in Kolmos et al. (1975). The proof is based on much the same arguments as in Horvath et al. (2000). As a consequence, we est
Structural changes occur in dynamic networks quite frequently and its detection is an important question in many situations such as fraud detection or cybersecurity. Real-life networks are often incompletely observed due to individual non-response or
In this presentation, we introduce a new method for change point analysis on the Hurst index for a piecewise fractional Brownian motion. We first set the model and the statistical problem. The proposed method is a transposition of the FDpV (Filtered