ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulations of the bichromatic force in multilevel systems

142   0   0.0 ( 0 )
 نشر من قبل Leland Aldridge
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Coherent optical bichromatic forces have been shown to be effective tools for rapidly slowing and cooling simple atomic systems. While previous estimates suggest that these forces may also be effective for rapidly decelerating molecules or complex atoms, a quantitative treatment for multilevel systems has been lacking. We describe detailed numerical modeling of bichromatic forces by direct numerical solution for the time-dependent density matrix in the rotating-wave approximation. We describe both the general phenomenology of an arbitrary few-level system and the specific requirements for slowing and cooling on a many-level transition in calcium monofluoride (CaF), one of the molecules of greatest current experimental interest. We show that it should be possible to decelerate a cryogenic buffer-gas-cooled beam of CaF nearly to rest without a repumping laser and within a longitudinal distance of about 1 cm. We also compare a full 16-level simulation for the CaF B$leftrightarrow$X system with a simplified numerical model and with a semiquantitative estimate based on 2-level systems. The simplified model performs nearly as well as the complete version, whereas the 2-level model is useful for making order-of-magnitude estimates, but nothing more.

قيم البحث

اقرأ أيضاً

We demonstrate that a bichromatic standing-wave laser field can exert a significantly larger force on a molecule than ordinary radiation pressure. Our experiment measures the deflection of a pulsed supersonic beam of CaF molecules by a two-frequency laser field detuned symmetrically about resonance with the nearly closed $X (v=0) rightarrow B (v=0)$ transition. The inferred force as a function of relative phase between the two counterpropagating beams is in reasonable agreement with numerical simulations of the bichromatic force in this multilevel system. The large magnitude of the force, coupled with the reduced rate of spontaneous emission, indicates its potential utility in the production and manipulation of ultracold molecules.
174 - M. A. Chieda , E. E. Eyler 2012
We examine two approaches for significantly extending the velocity range of the optical bichromatic force (BCF), to make it useful for laser deceleration of atomic and molecular beams. First, we present experimental results and calculations for BCF d eceleration of metastable helium using very large BCF detunings, and discuss the limitations of this approach. We consider in detail the constraints, both inherent and practical, that set the usable upper limit of the BCF. We then show that a more promising approach is to utilize a BCF profile with a relatively small velocity range in conjunction with chirped Doppler shifts, to keep the force resonant with the atoms as they are slowed. In an initial experimental test of this chirped BCF method, helium atoms are slowed by $sim 370$ m/s using a BCF profile with a velocity width of $lesssim 125$ m/s. Straightforward scaling of the present results indicates that a decelerator for He* capable of loading a magneto-optical trap (MOT) can yield a brightness comparable to a much larger Zeeman slower.
State-insensitive dipole trapping of multilevel atoms can be achieved by an appropriate choice of the wavelength of the trapping laser, so that the interaction with the different transitions results in equal AC Stark shifts for the ground and excited states of interest. However this approach is severely limited by the availability of coherent sources at the required wavelength and of appropriate power. This work investigates state-insensitive trapping of caesium atoms for which the required wavelength of 935.6 nm is inconvenient in terms of experimental realization. Bichromatic state-insensitive trapping is proposed to overcome the lack of suitable laser sources. We first consider pairs of laser wavelengths in the ratio 1:2 and 1:3, as obtained via second- and third- harmonic generation. We found that the wavelength combinations 931.8-1863.6 nm and 927.5-2782.5 nm are suitable for state-insensitive trapping of caesium atoms. In addition, we examine bichromatic state-insensitive trapping produced by pairs of laser wavelengths corresponding to currently available high power lasers. These wavelength pairs were found to be in the range of 585-588 nm and 623-629 for one laser and 1064-1080 nm for the other.
We show that properly detuning the carrier frequency of each of the criss-cross bichromatic waves from the transition frequency of the atom, it is possible to form a two-dimensional trap for atoms if the intensity of the waves is sufficiently large. For zero and near zero initial phases of waves, and also for $pi$ and near $pi$ phase shift between criss-cross waves a dynamic spatial structure of square cells with the side $lambda /sqrt{2}$ is formed. Numerical simulations are carried out for sodium atoms.
We investigate the coherent control of the photo-electron angular distribution in bichromatic atomic ionization. Neon is selected as target since it is one of the most popular systems in current gas-phase experiments with free-electron lasers (FELSs) . In particular, we tackle practical questions, such as the role of the fine-structure splitting, the pulse length, and the intensity. Time-dependent and stationary perturbation theory are employed, and we also solve the time-dependent Schrodinger equation in a single-active electron model. We consider neon ionized by a FEL pulse whose fundamental frequency is in resonance with either $2p-3s$ or $2p-4s$ excitation. The contribution of the non-resonant two-photon process and its potential constructive or destructive role for quantum coherent control is investigated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا