ﻻ يوجد ملخص باللغة العربية
The NASA New Horizons spacecraft flies past Pluto on July 14, 2015, carrying two instruments that detect charged particles. Pluto has a tenuous, extended atmosphere that is escaping the weak gravity of the planet. The interaction of the solar wind with the escaping atmosphere of Pluto depends on solar wind conditions as well as the vertical structure of the atmosphere. We have analyzed Voyager 2 particles and fields measurements between 25 and 39 AU and present their statistical variations. We have adjusted these predictions to allow for the declining activity of the Sun and solar wind output. We summarize the range of SW conditions that can be expected at 33 AU and survey the range of scales of interaction that New Horizons might experience. Model estimates for the solar wind stand-off distance vary from approximately 7 to 1000 RP with our best estimate being around 40 RP (where we take the radius of Pluto to be RP=1184 km).
The Solar Wind Around Pluto (SWAP) instrument on NASAs New Horizon Pluto mission has collected solar wind observations en route from Earth to Pluto, and these observations continue beyond Pluto. Few missions have explored the solar wind in the outer
The Solar Wind Around Pluto (SWAP) instrument on New Horizons will measure the interaction between the solar wind and ions created by atmospheric loss from Pluto. These measurements provide a characterization of the total loss rate and allow us to ex
Observations made during the New Horizons flyby provide a detailed snapshot of the current state of Plutos atmosphere. While the lower atmosphere (at altitudes <200 km) is consistent with ground-based stellar occultations, the upper atmosphere is muc
The New Horizons mission has provided resolved measurements of Plutos moons Styx, Nix, Kerberos, and Hydra. All four are small, with equivalent spherical diameters of $approx$40 km for Nix and Hydra and ~10 km for Styx and Kerberos. They are also hig
The Pluto system was recently explored by NASAs New Horizons spacecraft, making closest approach on 14 July 2015. Plutos surface displays diverse landforms, terrain ages, albedos, colors, and composition gradients. Evidence is found for a water-ice c