ترغب بنشر مسار تعليمي؟ اضغط هنا

Fermi Surfaces and $p$-$d$ Hybridization in the Diluted Magnetic Semiconductor Ba$_{1-x}$K$_{x}$(Zn$_{1-y}$Mn$_{y}$)$_{2}$As$_{2}$ Studied by Soft X-ray Angle Resolved Photoemission Spectroscopy

155   0   0.0 ( 0 )
 نشر من قبل Hakuto Suzuki
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The electronic structure of the new diluted magnetic semiconductor Ba$_{1-x}$K$_{x}$(Zn$_{1-y}$Mn$_{y}$)$_{2}$As$_{2}$ ($x=0.30$, $y=0.15$) in single crystal form has been investigated by angle-resolved photoemission spectroscopy (ARPES). %High density of states of nondispersive bands composed of the Zn $3d$ orbitals are observed with ultraviolet incident light. Measurements with soft x-rays clarify the host valence-band electronic structure primarily composed of the As $4p$ states. Two hole pockets around the $Gamma$ point, a hole corrugated cylinder surrounding the $Gamma$ and Z points, and an electron pocket around the Z point are observed, and explain the metallic transport of Ba$_{1-x}$K$_{x}$(Zn$_{1-y}$Mn$_{y}$)$_{2}$As$_{2}$. This is contrasted with Ga$_{1-x}$Mn$_{x}$As (GaMnAs), where it is located above the As $4p$ valence-band maximum (VBM) and no Fermi surfaces have been clearly identified. Resonance soft x-ray ARPES measurements reveal a nondispersive (Kondo resonance-like) Mn $3d$ impurity band near the Fermi level, as in the case of GaMnAs. However, the impurity band is located well below the VBM, unlike the impurity band in GaMnAs, which is located around and above the VBM. We conclude that, while the strong hybridization between the Mn $3d$ and the As $4p$ orbitals plays an important role in creating the impurity band and inducing high temperature ferromagnetism in both systems, the metallic transport may predominantly occur in the host valence band in Ba$_{1-x}$K$_{x}$(Zn$_{1-y}$Mn$_{y}$)$_{2}$As$_{2}$ and in the impurity band in GaMnAs.



قيم البحث

اقرأ أيضاً

168 - H. Suzuki , K. Zhao , G. Shibata 2014
The electronic and magnetic properties of a new diluted magnetic semiconductor (DMS) Ba$_{1-x}$K$_{x}$(Zn$_{1-y}$Mn$_{y}$)$_{2}$As$_{2}$, which is isostructural to so-called 122-type Fe-based superconductors, are investigated by x-ray absorption spec troscopy (XAS) and resonance photoemission spectroscopy (RPES). Mn $L_{2,3}$-edge XAS indicates that the doped Mn atoms have the valence 2+ and strongly hybridize with the $4p$ orbitals of the tetrahedrally coordinating As ligands. The Mn $3d$ partial density of states (PDOS) obtained by RPES shows a peak around 4 eV and relatively high between 0-2 eV below the Fermi level ($E_{F}$) with little contribution at $E_{F}$, similar to that of the archetypal DMS Ga$_{1-x}$Mn$_{x}$As. This energy level creates $d^{5}$ electron configuration with $S=5/2$ local magnetic moments at the Mn atoms. Hole carriers induced by K substitution for Ba atoms go into the top of the As $4p$ valence band and are weakly bound to the Mn local spins. The ferromagnetic correlation between the local spins mediated by the hole carriers induces ferromagnetism in Ba$_{1-x}$K$_{x}$(Zn$_{1-y}$Mn$_{y}$)$_{2}$As$_{2}$
We used angle-resolved photoemission spectroscopy (ARPES) and density functional theory calculations to study the electronic structure of Ba(Fe1-x-yCoxMny)2As2 for x=0.06 and 0<=y <=0.07. From ARPES we derive that the substitution of Fe by Mn does no t lead to hole doping, indicating a localization of the induced holes. An evaluation of the measured spectral function does not indicate a diverging effective mass or scattering rate near optimal doping. Thus the present ARPES results indicate a continuous evolution of the quasiparticle interaction and therefore question previous quantum critical scenarios.
We have investigated the electronic structure of the $p$-type diluted magnetic semiconductor In$_{1-x}$Mn$_x$As by photoemission spectroscopy. The Mn 3$d$ partial density of states is found to be basically similar to that of Ga$_{1-x}$Mn$_x$As. How ever, the impurity-band like states near the top of the valence band have not been observed by angle-resolved photoemission spectroscopy unlike Ga$_{1-x}$Mn$_x$As. This difference would explain the difference in transport, magnetic and optical properties of In$_{1-x}$Mn$_x$As and Ga$_{1-x}$Mn$_x$As. The different electronic structures are attributed to the weaker Mn 3$d$ - As 4$p$ hybridization in In$_{1-x}$Mn$_x$As than in Ga$_{1-x}$Mn$_x$As.
We have performed x-ray magnetic circular dichroism (XMCD) and valence-band photoemission studies of the diluted ferromagnetic semiconductor Zn$_{1-x}$Cr$_x$Te. XMCD signals due to ferromagnetism were observed at the Cr 2p absorption edge. Comparison with atomic multiplet calculations suggests that the magnetically active component of the Cr ion was divalent under the tetrahedral crystal field with tetragonal distortion along the crystalline a-, b-, and c-axes. In the valence-band spectra, spectral weight near the Fermi level was strongly suppressed, suggesting the importance of Jahn-Teller effect and the strong Coulomb interaction between the Cr 3d electrons.
Here we apply high resolution angle-resolved photoemission spectroscopy (ARPES) using a wide excitation energy range to probe the electronic structure and the Fermi surface topology of the Ba1-xKxFe2As2 (Tc = 32 K) superconductor. We find significant deviations in the low energy band structure from that predicted in calculations. A set of Fermi surface sheets with unexpected topology is detected at the Brillouin zone boundary. At the X-symmetry point the Fermi surface is formed by a shallow electron-like pocket surrounded by four hole-like pockets elongated in G-X and G-Y directions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا