ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray magnetic circular dichroism and photoemission study of the diluted ferromagnetic semiconductor Zn$_{1-x}$Cr$_x$Te

167   0   0.0 ( 0 )
 نشر من قبل Yukiaki Ishida
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have performed x-ray magnetic circular dichroism (XMCD) and valence-band photoemission studies of the diluted ferromagnetic semiconductor Zn$_{1-x}$Cr$_x$Te. XMCD signals due to ferromagnetism were observed at the Cr 2p absorption edge. Comparison with atomic multiplet calculations suggests that the magnetically active component of the Cr ion was divalent under the tetrahedral crystal field with tetragonal distortion along the crystalline a-, b-, and c-axes. In the valence-band spectra, spectral weight near the Fermi level was strongly suppressed, suggesting the importance of Jahn-Teller effect and the strong Coulomb interaction between the Cr 3d electrons.



قيم البحث

اقرأ أيضاً

The electronic structure of the Cr ions in the diluted ferromagnetic semiconductor Zn$_{1-x}$Cr$_x$Te ($x=0.03$ and 0.15) thin films has been investigated using x-ray magnetic circular dichroism (XMCD) and photoemission spectroscopy (PES). Magnetic-f ield ($H$) and temperature ($T$) dependences of the Cr $2p$ XMCD spectra well correspond to the magnetization measured by a SQUID magnetometer. The line shape of the Cr $2p$ XMCD spectra is independent of $H$, $T$, and $x$, indicating that the ferromagnetism is originated from the same electronic states of the Cr ion. Cluster-model analysis indicates that although there are two or more kinds of Cr ions in the Zn$_{1-x}$Cr$_x$Te samples, the ferromagnetic XMCD signal is originated from Cr ions substituted for the Zn site. The Cr 3d partial density of states extracted using Cr $2p to 3d$ resonant PES shows a broad feature near the top of the valence band, suggesting strong $s$,$p$-$d$ hybridization. No density of states is detected at the Fermi level, consistent with their insulating behavior. Based on these findings, we conclude that double exchange mechanism cannot explain the ferromagnetism in Zn$_{1-x}$Cr$_{x}$Te.
We report on the results of x-ray absorption (XAS), x-ray magnetic circular dichroism (XMCD), and photoemission experiments on {it n}-type Zn$_{1-x}$Co$_x$O ($x=0.05$) thin film, which shows ferromagnetism at room temperature. The XMCD spectra show a multiplet structure, characteristic of the Co$^{2+}$ ion tetrahedrally coordinated by oxygen, suggesting that the ferromagnetism comes from Co ions substituting the Zn site in ZnO. The magnetic field and temperature dependences of the XMCD spectra imply that the non-ferromagnetic Co ions are strongly coupled antiferromagnetically with each other.
We performed a soft x-ray magnetic circular dichroism (XMCD) study of a Zn$_{1-x}$V$_x$O thin film which showed small ferromagnetic moment. Field and temperature dependences of V 2$p$ XMCD signals indicated the coexistence of Curie-Weiss paramagnetic , antiferromagnetic, and possibly ferromagnetic V ions, quantitatively consistent with the magnetization measurements. We attribute the paramagnetic signal to V ions substituting Zn sites which are somewhat elongated along the c-axis.
We present the studies of Sn/1-x/Cr/x/Te semimagnetic semiconductors with chemical composition x ranging from 0.004 to 0.012. The structural characterization indicates that even at low average Cr-content x < ?0.012, the aggregation into micrometer si ze clusters appears in our samples. The magnetic properties are affected by the presence of clusters. In all our samples we observe the transition into the ordered state at temperatures between 130 and 140 K. The analysis of both static and dynamic magnetic susceptibility data indicates that the spin-glass-like state is observed in our samples. The addition of Cr to the alloy seems to shift the spin-glass-like transition from 130 K for x = 0.004 to 140 K for x = 0.012.
The magnetic properties of Zn$_{1-x}$Co$_x$O ($x=0.07$ and 0.10) thin films, which were homo-epitaxially grown on a ZnO(0001) substrates with varying relatively high oxygen pressure, have been investigated using x-ray magnetic circular dichroism (XMC D) at Co $2p$ core-level absorption edge. The line shapes of the absorption spectra are the same in all the films and indicate that the Co$^{2+}$ ions substitute for the Zn sites. The magnetic-field and temperature dependences of the XMCD intensity are consistent with the magnetization measurements, indicating that except for Co there are no additional sources for the magnetic moment, and demonstrate the coexistence of paramagnetic and ferromagnetic components in the homo-epitaxial Zn$_{1-x}$Co$_{x}$O thin films, in contrast to the ferromagnetism in the hetero-epitaxial Zn$_{1-x}$Co$_{x}$O films studied previously. The analysis of the XMCD intensities using the Curie-Weiss law reveals the presence of antiferromagnetic interaction between the paramagnetic Co ions. Missing XMCD intensities and magnetization signals indicate that most of Co ions are non-magnetic probably because they are strongly coupled antiferromagnetically with each other. Annealing in a high vacuum reduces both the paramagnetic and ferromagnetic signals. We attribute the reductions to thermal diffusion and aggregation of Co ions with antiferromagnetic nanoclusters in Zn$_{1-x}$Co$_{x}$O.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا