ترغب بنشر مسار تعليمي؟ اضغط هنا

Surface reconstruction in a tight-binding model for the topological Kondo insulator SmB6

66   0   0.0 ( 0 )
 نشر من قبل Pier Paolo Baruselli
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For the strongly correlated topological insulator SmB6 we discuss the influence of a 2x1 reconstruction of the (001) surface on the topological surface states. Depending on microscopic details, the reconstruction can be a weak or a strong perturbation to the electronic states. While the former leads to a weak backfolding of surface bands only, the latter can modify the surface-state dispersion and lead to a Lifshitz transition. We analyze the quasiparticle interference signal: while this tends to be weak in models for SmB6 in the absence of surface reconstruction, we find that the 2x1 reconstruction can induce novel peaks. We discuss experimental implications.



قيم البحث

اقرأ أيضاً

Bulk and surface state contributions to the electrical resistance of single-crystal samples of the topological Kondo insulator compound SmB6 are investigated as a function of crystal thickness and surface charge density, the latter tuned by ionic liq uid gating with electrodes patterned in a Corbino disk geometry on a single surface. By separately tuning bulk and surface conduction channels, we show conclusive evidence for a model with an insulating bulk and metallic surface states, with a crossover temperature that depends solely on the relative contributions of each conduction channel. The surface conductance, on the order of 100 e^2/h and electron-like, exhibits a field-effect mobility of 133 cm^2/V/s and a large carrier density of ~2x10^{14}/cm^2, in good agreement with recent photoemission results. With the ability to gate-modulate surface conduction by more than 25%, this approach provides promise for both fundamental and applied studies of gate-tuned devices structured on bulk crystal samples.
We present a detailed investigation of the temperature and depth dependence of the magnetic properties of 3D topological Kondo insulator SmB6 , in particular near its surface. We find that local magnetic field fluctuations detected in the bulk are su ppressed rapidly with decreasing depths, disappearing almost completely at the surface. We attribute the magnetic excitations to spin excitons in bulk SmB6 , which produce local magnetic fields of about ~1.8 mT fluctuating on a time scale of ~60 ns. We find that the excitonic fluctuations are suppressed when approaching the surface on a length scale of 40-90 nm, accompanied by a small enhancement in static magnetic fields. We associate this length scale to the size of the excitonic state.
The Kondo insulator SmB6 has long been known to exhibit low temperature transport anomalies whose origin is of great interest. Here we uniquely access the surface electronic structure of the anomalous transport regime by combining state-of-the-art la ser- and synchrotron-based angle-resolved photoemission techniques. We observe clear in-gap states (up to 4 meV), whose temperature dependence is contingent upon the Kondo gap formation. In addition, our observed in-gap Fermi surface oddness tied with the Kramers points topology, their coexistence with the two-dimensional transport anomaly in the Kondo hybridization regime, as well as their robustness against thermal recycling, taken together, collectively provide by-far the strongest evidence for protected surface metallicity with a Fermi surface whose topology is consistent with the theoretically predicted topological surface Fermi surface (TSS). Our observations of systematic surface electronic structure provide the fundamental electronic parameters for the anomalous Kondo ground state of the correlated electron material SmB6.
The Kondo insulator compound SmB6 has emerged as a strong candidate for the realization of a topologically nontrivial state in a strongly correlated system, a topological Kondo insulator, which can be a novel platform for investigating the interplay between nontrivial topology and emergent correlation driven phenomena in solid state systems. Electronic transport measurements on this material, however, so far showed only the robust surface dominated charge conduction at low temperatures, lacking evidence of its connection to the topological nature by showing, for example, spin polarization due to spin momentum locking. Here, we find evidence for surface state spin polarization by electrical detection of a current induced spin chemical potential difference on the surface of a SmB6 single crystal. We clearly observe a surface dominated spin voltage, which is proportional to the projection of the spin polarization onto the contact magnetization, is determined by the direction and magnitude of the charge current and is strongly temperature dependent due to the crossover from surface to bulk conduction. We estimate the lower bound of the surface state net spin polarization as 15 percent based on the quantum transport model providing direct evidence that SmB6 supports metallic spin helical surface states.
The Kondo insulator SmB6 has long been known to exhibit low temperature (T < 10K) transport anomaly and has recently attracted attention as a new topological insulator candidate. By combining low-temperature and high energy-momentum resolution of the laser-based ARPES technique, for the first time, we probe the surface electronic structure of the anomalous conductivity regime. We observe that the bulk bands exhibit a Kondo gap of 14 meV and identify in-gap low-lying states within a 4 meV window of the Fermi level on the (001)-surface of this material. The low-lying states are found to form electron-like Fermi surface pockets that enclose the X and the Gamma points of the surface Brillouin zone. These states disappear as temperature is raised above 15K in correspondence with the complete disappearance of the 2D conductivity channels in SmB6. While the topological nature of the in-gap metallic states cannot be ascertained without spin (spin-texture) measurements our bulk and surface measurements carried out in the transport-anomaly-temperature regime (T < 10K) are consistent with the first-principle predicted Fermi surface behavior of a topological Kondo insulator phase in this material.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا