ترغب بنشر مسار تعليمي؟ اضغط هنا

H.E.S.S. discovery of very-high-energy gamma-ray emission of PKS 1440-389

87   0   0.0 ( 0 )
 نشر من قبل Heike Prokoph
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Blazars are the most abundant class of known extragalactic very-high-energy (VHE, E>100 GeV) gamma-ray sources. However, one of the biggest difficulties in investigating their VHE emission resides in their limited number, since less than 60 of them are known by now. In this contribution we report on H.E.S.S. observations of the BL Lac object PKS 1440-389. This source has been selected as target for H.E.S.S. based on its high-energy gamma-ray properties measured by Fermi-LAT. The extrapolation of this bright, hard-spectrum gamma-ray blazar into the VHE regime made a detection on a relatively short time scale very likely, despite its uncertain redshift. H.E.S.S. observations were carried out with the 4-telescope array from February to May 2012 and resulted in a clear detection of the source. Contemporaneous multi-wavelength data are used to construct the spectral energy distribution of PKS 1440-389 which can be described by a simple one-zone synchrotron-self Compton model.

قيم البحث

اقرأ أيضاً

PKS 0625-354 (z=0.055) was observed with the four H.E.S.S. telescopes in 2012 during 5.5 hours. The source was detected above an energy threshold of 200 GeV at a significance level of 6.1$sigma$. No significant variability is found in these observati ons. The source is well described with a power-law spectrum with photon index $Gamma =2.84 pm 0.50_{stat} pm 0.10_{syst}$ and normalization (at $E_0$=1.0 TeV) $N_0(E_0)=(0.58 pm 0.22_{stat} pm 0.12_{syst})times10^{-12}$ TeV$^{-1}$cm$^{-2}$s$^{-1}$. Multi-wavelength data collected with Fermi-LAT, Swift-XRT, Swift-UVOT, ATOM and WISE are also analysed. Significant variability is observed only in the Fermi-LAT $gamma$-ray and Swift-XRT X-ray energy bands. Having a good multi-wavelength coverage from radio to very high energy, we performed a broadband modelling from two types of emission scenarios. The results from a one zone lepto-hadronic, and a multi-zone leptonic models are compared and discussed. On the grounds of energetics, our analysis favours a leptonic multi-zone model. Models associated to the X-ray variability constraint supports previous results suggesting a BL Lac nature of PKS 0625-354, with, however, a large-scale jet structure typical of a radio galaxy.
The active galactic nucleus PKS 0301-243 (z=0.266) is a high-synchrotron-peaked BL Lac object that is detected at high energies (HE, 100 MeV < E < 100 GeV) by Fermi/LAT. This paper reports on the discovery of PKS 0301-243 at very high energies (E>100 GeV) by the High Energy Stereoscopic System (H.E.S.S.) from observations between September 2009 and December 2011 for a total live time of 34.9 hours. Gamma rays above 200 GeV are detected at a significance of 9.4{sigma}. A hint of variability at the 2.5{sigma} level is found. An integral flux I(E > 200 GeV) = (3.3 +/- 1.1_stat +/- 0.7_syst)e-12 ph cm^-2s^-1 and a photon index {Gamma} = 4.6 +/- 0.7_stat +/- 0.2_syst are measured. Multi-wavelength light curves in HE, X-ray and optical bands show strong variability, and a minimal variability timescale of eight days is estimated from the optical light curve. A single-zone leptonic synchrotron self-Compton scenario satisfactorily reproduces the multi-wavelength data. In this model, the emitting region is out of equipartition and the jet is particle dominated. Because of its high redshift compared to other sources observed at TeV energies, the very high energy emission from PKS 0301-243 is attenuated by the extragalactic background light (EBL) and the measured spectrum is used to derive an upper limit on the opacity of the EBL.
Flat-spectrum radio-quasars (FSRQs) are rarely detected at very-high-energies (VHE; E>100 GeV) due to their low-frequency-peaked SEDs. At present, only 6 FSRQs are known to emit VHE photons, representing only 7% of the VHE extragalactic catalog. Foll owing the detection of MeV-GeV gamma-ray flaring activity from the FSRQ PKS 0736+017 (z=0.189) with Fermi, the H.E.S.S. array of Cherenkov telescopes triggered ToO observations on February 18, 2015, with the goal of studying the gamma-ray emission in the VHE band. H.E.S.S. ToO observations were carried out during the nights of February 18, 19, 21, and 24, 2015. Together with Fermi-LAT, the multi-wavelength coverage of the flare includes Swift observations in soft-X-rays and optical/UV, and optical monitoring (photometry and spectro-polarimetry) by the Steward Observatory, the ATOM, the KAIT and the ASAS-SN telescope. VHE emission from PKS 0736+017 was detected with H.E.S.S. during the night of February 19, 2015, only. Fermi data indicate the presence of a gamma-ray flare, peaking at the time of the H.E.S.S. detection, with a flux doubling time-scale of around six hours. The gamma-ray flare was accompanied by at least a 1 mag brightening of the non-thermal optical continuum. No simultaneous observations at longer wavelengths are available for the night of the H.E.S.S. detection. The gamma-ray observations with H.E.S.S. and Fermi are used to put constraints on the location of the gamma-ray emitting region during the flare: it is constrained to be just outside the radius of the broad-line-region with a bulk Lorentz factor $simeq 20$, or at the level of the radius of the dusty torus with Gamma > 60. PKS 0736+017 is the seventh FSRQ known to emit VHE photons and, at z=0.189, is the nearest so far. The location of the gamma-ray emitting region during the flare can be tightly constrained thanks to opacity, variability, and collimation arguments.
The BL Lacertae object 1ES 1440+122 was observed in the energy range from 85 GeV to 30 TeV by the VERITAS array of imaging atmospheric Cherenkov telescopes. The observations, taken between 2008 May and 2010 June and totalling 53 hours, resulted in th e discovery of $gamma$-ray emission from the blazar, which has a redshift $z$=0.163. 1ES 1440+122 is detected at a statistical significance of 5.5 standard deviations above the background with an integral flux of (2.8$pm0.7_{mathrm{stat}}pm0.8_{mathrm{sys}}$) $times$ 10$^{-12}$ cm$^{-2}$ s$^{-1}$ (1.2% of the Crab Nebulas flux) above 200 GeV. The measured spectrum is described well by a power law from 0.2 TeV to 1.3 TeV with a photon index of 3.1 $pm$ 0.4$_{mathrm{stat}}$ $pm$ 0.2$_{mathrm{sys}}$. Quasi-simultaneous multi-wavelength data from the Fermi Large Area Telescope (0.3--300 GeV) and the Swift X-ray Telescope (0.2--10 keV) are additionally used to model the properties of the emission region. A synchrotron self-Compton model produces a good representation of the multi-wavelength data. Adding an external-Compton or a hadronic component also adequately describes the data.
81 - P. Eger , C. van Eldik 2013
Globular clusters (GCs) are established emitters of high-energy (HE, 100 MeV<E<100 GeV) gamma-ray radiation which could originate from the cumulative emission of the numerous millisecond pulsars (msPSRs) in the clusters cores or from inverse Compton (IC) scattering of relativistic leptons accelerated in the GC environment. GCs could also constitute a new class of sources in the very-high-energy (VHE, E>100 GeV) gamma-ray regime, judging from the recent detection of emission from the direction of Terzan 5 with the H.E.S.S. telescope array. To search for VHE gamma-ray sources associated with other GCs, and to put constraints on leptonic emission models, we systematically analyzed the observations towards 15 GCs taken with H.E.S.S. We searched for individual sources of VHE gamma-rays from each GC in our sample and also performed a stacking analysis combining the data from all GCs to investigate the hypothesis of a population of faint emitters. Assuming IC emission as the source of emission from Terzan 5, we calculated the expected gamma-ray flux for each of the 15 GCs, based on their number of millisecond pulsars, their optical brightness and the energy density of background photon fields. We did not detect significant emission from any of the 15 GCs. The obtained flux upper limits allow to rule out the simple IC/msPSR scaling model for NGC 6388 and NGC 7078. The upper limits derived from the stacking analyses are factors between 2 and 50 below the flux predicted by the simple leptonic model, depending on the assumed source extent and the dominant target photon fields. Therefore, Terzan 5 still remains exceptional among all GCs, as the VHE gamma-ray emission either arises from extra-ordinarily efficient leptonic processes, or from a recent catastrophic event, or is even unrelated to the GC itself.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا